Skip to main content

Advertisement

Log in

Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

An unprecedented spectroscopic data stream will soon become available with forthcoming Earth-observing satellite missions equipped with imaging spectroradiometers. This data stream will open up a vast array of opportunities to quantify a diversity of biochemical and structural vegetation properties. The processing requirements for such large data streams require reliable retrieval techniques enabling the spatiotemporally explicit quantification of biophysical variables. With the aim of preparing for this new era of Earth observation, this review summarizes the state-of-the-art retrieval methods that have been applied in experimental imaging spectroscopy studies inferring all kinds of vegetation biophysical variables. Identified retrieval methods are categorized into: (1) parametric regression, including vegetation indices, shape indices and spectral transformations; (2) nonparametric regression, including linear and nonlinear machine learning regression algorithms; (3) physically based, including inversion of radiative transfer models (RTMs) using numerical optimization and look-up table approaches; and (4) hybrid regression methods, which combine RTM simulations with machine learning regression methods. For each of these categories, an overview of widely applied methods with application to mapping vegetation properties is given. In view of processing imaging spectroscopy data, a critical aspect involves the challenge of dealing with spectral multicollinearity. The ability to provide robust estimates, retrieval uncertainties and acceptable retrieval processing speed are other important aspects in view of operational processing. Recommendations towards new-generation spectroscopy-based processing chains for operational production of biophysical variables are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adam E, Mutanga O, Abdel-Rahman E, Ismail R (2014) Estimating standing biomass in papyrus (Cyperus papyrus L.) swamp: exploratory of in situ hyperspectral indices and random forest regression. Int J Remote Sens 35(2):693–714

    Google Scholar 

  • Addink E, De Jong S, Pebesma E (2007) The importance of scale in object-based mapping of vegetation parameters with hyperspectral imagery. Photogramm Eng Remote Sens 73(8):905–912

    Google Scholar 

  • Ali A, Skidmore A, Darvishzadeh R, van Duren I, Holzwarth S, Mueller J (2016) Retrieval of forest leaf functional traits from HySpex imagery using radiative transfer models and continuous wavelet analysis. ISPRS J Photogramm Remote Sens 122:68–80

    Google Scholar 

  • Alton P, Ellis R, Los S, North P (2007) Improved global simulations of gross primary product based on a separate and explicit treatment of diffuse and direct sunlight. J Geophys Res Atmos 112:D02108

    Google Scholar 

  • Arellano P, Tansey K, Balzter H, Tellkamp M (2017) Plant family-specific impacts of petroleum pollution on biodiversity and leaf chlorophyll content in the Amazon rainforest of Ecuador. PLoS ONE 12(1):e0169867

    Google Scholar 

  • Arenas-García J, Camps-Valls G (2008) Efficient kernel orthonormalized PLS for remote sensing applications. IEEE Trans Geosci Remote Sens 46(10):2872–2881

    Google Scholar 

  • Ashourloo D, Aghighi H, Matkan A, Mobasheri M, Rad A (2016) An investigation into machine learning regression techniques for the leaf rust disease detection using hyperspectral measurement. IEEE J Select Top Appl Earth Observ Remote Sens 9(9):4344–4351

    Google Scholar 

  • Atzberger C, Guérif M, Baret F, Werner W (2010) Comparative analysis of three chemometric techniques for the spectroradiometric assessment of canopy chlorophyll content in winter wheat. Comput Electron Agric 73(2):165–173

    Google Scholar 

  • Atzberger C, Darvishzadeh R, Immitzer M, Schlerf M, Skidmore A, le Maire G (2015) Comparative analysis of different retrieval methods for mapping grassland leaf area index using airborne imaging spectroscopy. Int J Appl Earth Observ Geoinf 43:19–31

    Google Scholar 

  • Bacour C, Baret F, Béal D, Weiss M, Pavageau K (2006) Neural network estimation of LAI, fAPAR, fCover and LAI\(\times\)Cab, from top of canopy MERIS reflectance data: principles and validation. Remote Sens Environ 105(4):313–325

    Google Scholar 

  • Balzarolo M, Vescovo L, Hammerle A, Gianelle D, Papale D, Tomelleri E, Wohlfahrt G (2015) On the relationship between ecosystem-scale hyperspectral reflectance and \(CO_2\) exchange in European mountain grasslands. Biogeosciences 12(10):3089–3108

    Google Scholar 

  • Banskota A, Wynne R, Thomas V, Serbin S, Kayastha N, Gastellu-Etchegorry J, Townsend P (2013) Investigating the utility of wavelet transforms for inverting a 3-D radiative transfer model using hyperspectral data to retrieve forest LAI. Remote Sens 5(6):2639–2659

    Google Scholar 

  • Banskota A, Serbin S, Wynne R, Thomas V, Falkowski M, Kayastha N, Gastellu-Etchegorry JP, Townsend P (2015) An LUT-based inversion of DART model to estimate forest LAI from hyperspectral data. IEEE J Sel Top Appl Earth Observ Remote Sens 8(6):3147–3160

    Google Scholar 

  • Bao S, Cao C, Chen W, Tian H (2017) Spectral features and separability of alpine wetland grass species. Spectrosc Lett 50(5):245–256

    Google Scholar 

  • Baranoski G, Rokne J (2005) A practical approach for estimating the red edge position of plant leaf reflectance. Int J Remote Sens 26(3):503–521

    Google Scholar 

  • Baret F, Buis S (2008) Estimating canopy characteristics from remote sensing observations. Review of methods and associated problems. In: Liang S (ed) Advances in land remote sensing: system, modeling, inversion and application. Springer, New York, pp 171–200

    Google Scholar 

  • Baret F, Weiss M, Lacaze R, Camacho F, Makhmara H, Pacholcyzk P, Smets B (2013) GEOV1: LAI and FAPAR essential climate variables and FCOVER global time series capitalizing over existing products. Part 1: principles of development and production. Remote Sens Environ 137:299–309

    Google Scholar 

  • Barton CVM, North P (2001) Remote sensing of canopy light use efficiency using the photochemical reflectance index: model and sensitivity analysis. Remote Sens Environ 78(3):264–273

    Google Scholar 

  • Bayat B, van der Tol C, Verhoef W (2016) Remote sensing of grass response to drought stress using spectroscopic techniques and canopy reflectance model inversion. Remote Sens 8(7):557

    Google Scholar 

  • Belgiu M, Drăguţ L (2016) Random forest in remote sensing: a review of applications and future directions. ISPRS J Photogramm Remote Sens 114:24–31

    Google Scholar 

  • Berk A, Anderson G, Acharya P, Bernstein L, Muratov L, Lee J, Fox M, Adler-Golden S, Chetwynd J, Hoke M, Lockwood R, Gardner J, Cooley T, Borel C, Lewis P, Shettle E (2006) MODTRANTM5: 2006 update. vol 6233 II

  • Botha E, Leblon B, Zebarth B, Watmough J (2007) Non-destructive estimation of potato leaf chlorophyll from canopy hyperspectral reflectance using the inverted PROSAIL model. Int J Appl Earth Observ Geoinf 9(4):360–374

    Google Scholar 

  • Bratsch S, Epstein H, Buchhorn M, Walker D, Landes H (2017) Relationships between hyperspectral data and components of vegetation biomass in Low Arctic tundra communities at Ivotuk, Alaska. Environ Res Lett 12(2):025003

  • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Google Scholar 

  • Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Google Scholar 

  • Breiman L, Friedman J, Stone C, Olshen R (1984) Classification and regression trees. The Wadsworth and Brooks-Cole statistics-probability series. Taylor & Francis, London

    Google Scholar 

  • Broge NH, Leblanc E (2001) Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sens Environ 76(2):156–172

    Google Scholar 

  • Broomhead DS, Lowe D (1988) Radial basis functions, multi-variable functional interpolation and adaptive networks. Tech. rep, Royal Signals and Radar Establishment Malvern (United Kingdom)

  • Buchhorn M, Walker DA, Heim B, Raynolds MK, Epstein HE, Schwieder M (2013) Ground-based hyperspectral characterization of alaska tundra vegetation along environmental gradients. Remote Sens 5(8):3971–4005

    Google Scholar 

  • Burden F, Winkler D (1999) Robust QSAR models using bayesian regularized neural networks. J Med Chem 42(16):3183–3187

    Google Scholar 

  • Bye I, North P, Los S, Kljun N, Rosette J, Hopkinson C, Chasmer L, Mahoney C (2017) Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model. Remote Sens Environ 188:177–189

    Google Scholar 

  • Camps-Valls G, Verrelst J, Muñoz-Marí J, Laparra V, Mateo-Jiménez F, Gómez-Dans J (2016) A survey on Gaussian processes for earth observation data analysis. IEEE Geosci Remote Sens Mag 4(2):41–57

    Google Scholar 

  • Capolupo A, Kooistra L, Berendonk C, Boccia L, Suomalainen J (2015) Estimating plant traits of grasslands from UAV-acquired hyperspectral images: a comparison of statistical approaches. ISPRS Int J Geo-Inf 4(4):2792–2820

    Google Scholar 

  • Chen B, Wu Z, Wang J, Dong J, Guan L, Chen J, Yang K, Xie G (2015) Spatio-temporal prediction of leaf area index of rubber plantation using HJ-1A/1B CCD images and recurrent neural network. ISPRS J Photogramm Remote Sens 102:148–160

    Google Scholar 

  • Cho MA, Skidmore AK (2006) A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method. Remote Sens Environ 101(2):181–193

    Google Scholar 

  • Cho M, Skidmore A, Corsi F, van Wieren S, Ib Sobhan (2007) Estimation of green grass/herb biomass from airborne hyperspectral imagery using spectral indices and partial least squares regression. Int J Appl Earth Observ Geoinf 9(4):414–424

    Google Scholar 

  • Cho MA, Skidmore AK, Atzberger C (2008) Towards red-edge positions less sensitive to canopy biophysical parameters for leaf chlorophyll estimation using properties optique spectrales des feuilles (PROSPECT) and scattering by arbitrarily inclined leaves (SAILH) simulated data. Int J Remote Sens 29(8):2241–2255

    Google Scholar 

  • Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res Solid Earth 89(B7):6329–6340

    Google Scholar 

  • Clevers J (2014) Beyond NDVI: extraction of biophysical variables from remote sensing imagery. Remote Sens Digital Image Process 18:363–381

    Google Scholar 

  • Clevers J, Kooistra L (2012) Using hyperspectral remote sensing data for retrieving canopy chlorophyll and nitrogen content. IEEE J Sel Top Appl Earth Observ Remote Sens 5(2):574–583

    Google Scholar 

  • Clevers JGPW, Kooistra L, Salas EAL (2004) Study of heavy metal contamination in river floodplains using the red-edge position in spectroscopic data. Int J Remote Sens 25(19):3883–3895

    Google Scholar 

  • Coops NC, Smith ML, Martin M, Ollinger SV (2003) Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans Geosci Remote Sens 41(6):1338–1346

    Google Scholar 

  • Cressie N, Calder C, Clark J, Ver Hoef J, Wikle C (2009) Accounting for uncertainty in ecological analysis: the strengths and limitations of hierarchical statistical modeling. Ecol Appl 19(3):553–570

    Google Scholar 

  • Danner M, Berger K, Wocher M, Mauser W, Hank T (2017) Retrieval of biophysical crop variables from multi-angular canopy spectroscopy. Remote Sens 9(7):726

    Google Scholar 

  • Darvishzadeh R, Skidmore A, Schlerf M, Atzberger C (2008) Inversion of a radiative transfer model for estimating vegetation LAI and chlorophyll in a heterogeneous grassland. Remote Sens Environ 112(5):2592–2604

    Google Scholar 

  • Darvishzadeh R, Matkan AA, Dashti Ahangar A (2012) Inversion of a radiative transfer model for estimation of rice canopy chlorophyll content using a lookup-table approach. IEEE J Sel Top Appl Earth Observ Remote Sens 99:1–9

    Google Scholar 

  • Dawson T, Curran P, Plummer S (1998) LIBERTY—Modeling the effects of leaf biochemical concentration on reflectance spectra. Remote Sens Environ 65(1):50–60

    Google Scholar 

  • Delegido J, Alonso L, González G, Moreno J (2010) Estimating chlorophyll content of crops from hyperspectral data using a normalized area over reflectance curve (NAOC). Int J Appl Earth Observ Geoinf 12(3):165–174

    Google Scholar 

  • Delegido J, Verrelst J, Alonso L, Moreno J (2011) Evaluation of sentinel-2 red-edge bands for empirical estimation of green LAI and chlorophyll content. Sensors 11(7):7063–7081

    Google Scholar 

  • Delegido J, Verrelst J, Meza C, Rivera J, Alonso L, Moreno J (2013) A red-edge spectral index for remote sensing estimation of green LAI over agroecosystems. Eur J Agron 46:42–52

    Google Scholar 

  • Dietz A, Kuenzer C, Gessner U, Dech S (2012) Remote sensing of snow—a review of available methods. Int J Remote Sens 33(13):4094–4134

    Google Scholar 

  • Disney M, Lewis P, Saich P (2006) 3D modelling of forest canopy structure for remote sensing simulations in the optical and microwave domains. Remote Sens Environ 100(1):114–132

    Google Scholar 

  • Doktor D, Lausch A, Spengler D, Thurner M (2014) Extraction of plant physiological status from hyperspectral signatures using machine learning methods. Remote Sens 6(12):12247–12274

    Google Scholar 

  • Dorigo WA, Zurita-Milla R, de Wit AJW, Brazile J, Singh R, Schaepman ME (2007) A review on reflective remote sensing and data assimilation techniques for enhanced agroecosystem modeling. Int J Appl Earth Observ Geoinf 9(2):165–193

    Google Scholar 

  • Dorigo W, Richter R, Baret F, Bamler R, Wagner W (2009) Enhanced automated canopy characterization from hyperspectral data by a novel two step radiative transfer model inversion approach. Remote Sens 1(4):1139–1170

    Google Scholar 

  • Draper NR, Smith H (2014) Applied regression analysis. Wiley, New York

    Google Scholar 

  • Dreccer M, Barnes L, Meder R (2014) Quantitative dynamics of stem water soluble carbohydrates in wheat can be monitored in the field using hyperspectral reflectance. Field Crops Res 159:70–80

    Google Scholar 

  • Drusch M, Moreno J, Del Bello U, Franco R, Goulas Y, Huth A, Kraft S, Middleton EM, Miglietta F, Mohammed G et al (2017) The fluorescence explorer mission concept-ESA’s earth explorer 8. IEEE Trans Geosci Remote Sens 55(3):1273–1284

    Google Scholar 

  • Du L, Shi S, Yang J, Sun J, Gong W (2016) Using different regression methods to estimate leaf nitrogen content in rice by fusing hyperspectral LiDAR data and laser-induced chlorophyll fluorescence data. Remote Sens 8(6):526

    Google Scholar 

  • Duan SB, Li ZL, Wu H, Tang BH, Ma L, Zhao E, Li C (2014) Inversion of the PROSAIL model to estimate leaf area index of maize, potato, and sunflower fields from unmanned aerial vehicle hyperspectral data. Int J Appl Earth Observ Geoinf 26(1):12–20

    Google Scholar 

  • Elvidge CD, Chen Z (1995) Comparison of broad-band and narrow-band red and near-infrared vegetation indices. Remote Sens Environ 54(1):38–48

    Google Scholar 

  • Favennec Y, Le Hardy D, Dubot F, Rousseau B, Rousse D (2016) Some speed-up strategies for solving inverse radiative transfer problems. J Phys Conf Ser 676(1):012006

    Google Scholar 

  • Fei Y, Jiulin S, Hongliang F, Zuofang Y, Jiahua Z, Yunqiang Z, Kaishan S, Zongming W, Maogui H (2012) Comparison of different methods for corn LAI estimation over northeastern China. Int J Appl Earth Observ Geoinf 18:462–471

    Google Scholar 

  • Feilhauer H, Asner GP, Martin RE (2015) Multi-method ensemble selection of spectral bands related to leaf biochemistry. Remote Sens Environ 164:57–65

    Google Scholar 

  • Feilhauer H, Somers B, van der Linden S (2017) Optical trait indicators for remote sensing of plant species composition: predictive power and seasonal variability. Ecol Indic 73:825–833

    Google Scholar 

  • Feng H, Yang F, Li Z, Yang G, Guo J, He P, Wang Y (2016) Hyperspectral estimation of leaf total phosphorus content in apple tree based on optimal weights combination model. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 32(7):173–180

    Google Scholar 

  • Feret JB, François C, Asner GP, Gitelson AA, Martin RE, Bidel LPR, Ustin SL, le Maire G, Jacquemoud S (2008) PROSPECT-4 and 5: advances in the leaf optical properties model separating photosynthetic pigments. Remote Sens Environ 112(6):3030–3043

    Google Scholar 

  • Foster A, Kakani V, Mosali J (2017) Estimation of bioenergy crop yield and N status by hyperspectral canopy reflectance and partial least square regression. Precis Agric 18(2):192–209

    Google Scholar 

  • Francl L, Panigrahi S (1997) Artificial neural network models of wheat leaf wetness. Agric For Meteorol 88(1–4):57–65

    Google Scholar 

  • Friedman J, Hastie T, Tibshirani R (2000) Additive logistic regression: a statistical view of boosting. Ann Stat 28(2):337–407

    Google Scholar 

  • Fu Y, Yang G, Feng H, Xu X, Song X, Wang J (2012) Comparison of winter wheat LAI estimation methods based on hyperspectral dimensionality reduction and vegetation index. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 28(23):107–113

    Google Scholar 

  • Gastellu-Etchegorry J, Demarez V, Pinel V, Zagolski F (1996) Modeling radiative transfer in heterogeneous 3-D vegetation canopies. Remote Sens Environ 58(2):131–156

    Google Scholar 

  • Gastellu-Etchegorry J, Guillevic P, Zagolski F, Demarez V, Trichon V, Deering D, Leroy M (1999) Modeling BRF and radiation regime of boreal and tropical forests: I BRF. Remote Sens Environ 68(3):281–316

    Google Scholar 

  • Gastellu-Etchegorry J, Gascon F, Esteve P (2003) An interpolation procedure for generalizing a look-up table inversion method. Remote Sens Environ 87(1):55–71

    Google Scholar 

  • Gastellu-Etchegorry J, Martin E, Gascon F (2004) DART: a 3D model for simulating satellite images and studying surface radiation budget. Int J Remote Sens 25(1):73–96

    Google Scholar 

  • Gastellu-Etchegorry JP, Yin T, Lauret N, Cajgfinger T, Gregoire T, Grau E, Feret JB, Lopes M, Guilleux J, Dedieu G, Malenovský Z, Cook B, Morton D, Rubio J, Durrieu S, Cazanave G, Martin E, Ristorcelli T (2015) Discrete anisotropic radiative transfer (DART 5) for modeling airborne and satellite spectroradiometer and LIDAR acquisitions of natural and urban landscapes. Remote Sens 7(2):1667–1701

    Google Scholar 

  • Gastellu-Etchegorry JP, Yin T, Lauret N, Grau E, Rubio J, Cook B, Morton D, Sun G (2016) Simulation of satellite, airborne and terrestrial LiDAR with DART (I): Waveform simulation with quasi-Monte Carlo ray tracing. Remote Sens Environ 184:418–435

    Google Scholar 

  • Gastellu-Etchegorry J, Lauret N, Yin T, Landier L, Kallel A, Malenovský Z, Al Bitar A, Aval J, Benhmida S, Qi J, Medjdoub G, Guilleux J, Chavanon E, Cook B, Morton D, Nektarios N, Mitraka Z (2017) DART: recent advances in remote sensing data modeling with atmosphere, polarization, and chlorophyll fluorescence. IEEE J Sel Top Appl Earth Observ Remote Sens. Accepted 8 March 2017. (in press)

  • Geladi P, Kowalski B (1986) Partial least-squares regression: a tutorial. Analytica Chimica Acta 185(C):1–17

    Google Scholar 

  • Gewali U, Monteiro S, Saber E (2018) Machine learning based hyperspectral image analysis: a survey. arXiv:1802.08701

  • Gianelle D, Guastella F (2007) Nadir and off-nadir hyperspectral field data: strengths and limitations in estimating grassland biophysical characteristics. Int J Remote Sens 28(7):1547–1560

    Google Scholar 

  • Glenn E, Huete A, Nagler P, Nelson S (2008) Relationship between remotely-sensed vegetation indices, canopy attributes and plant physiological processes: What vegetation indices can and cannot tell us about the landscape. Sensors 8(4):2136–2160

    Google Scholar 

  • Gómez-Chova L, Muñoz-Marí J, Laparra V, Malo-López J, Camps-Valls G (2011) A review of kernel methods in remote sensing data analysis. In: Optical remote sensing. Springer, Berlin, pp 171–206

  • Gómez-Dans JL, Lewis PE, Disney M (2016) Efficient emulation of radiative transfer codes using gaussian processes and application to land surface parameter inferences. Remote Sens 8(2):119

    Google Scholar 

  • Gonsamo A (2011) Normalized sensitivity measures for leaf area index estimation using three-band spectral vegetation indices. Int J Remote Sens 32(7):2069–2080

    Google Scholar 

  • Govaerts YM, Verstraete MM (1998) Raytran: a Monte Carlo ray-tracing model to compute light scattering in three-dimensional heterogeneous media. IEEE Trans Geosci Remote Sens 36(2):493–505

    Google Scholar 

  • Grau E, Gastellu-Etchegorry JP (2013) Radiative transfer modeling in the Earth-Atmosphere system with DART model. Remote Sens Environ 139:149–170

    Google Scholar 

  • Guanter L, Kaufmann H, Segl K, Foerster S, Rogass C, Chabrillat S, Kuester T, Hollstein A, Rossner G, Chlebek C, Straif C, Fischer S, Schrader S, Storch T, Heiden U, Mueller A, Bachmann M, Muhle H, Muller R, Habermeyer M, Ohndorf A, Hill J, Buddenbaum H, Hostert P, van der Linden S, Leitao PJ, Rabe A, Doerffer R, Krasemann H, Xi H, Mauser W, Hank T, Locherer M, Rast M, Staenz K, Sang B (2015) The EnMAP spaceborne imaging spectroscopy mission for earth observation. Remote Sens 7(7):8830

    Google Scholar 

  • Guillevic P, Gastellu-Etchegorry J, Demarty J, Prévot L (2003) Thermal infrared radiative transfer within three-dimensional vegetation covers. J Geophys Res Atmos. https://doi.org/10.1029/2002JD002247

    Google Scholar 

  • Han ZY, Zhu XC, Fang XY, Wang ZY, Wang L, Zhao GX, Jiang YM (2016) Hyperspectral estimation of apple tree canopy LAI based on SVM and RF regression. Guang Pu Xue Yu Guang Pu Fen Xi/Spectrosc Spectr Anal 36(3):800–805

    Google Scholar 

  • Hancock S, Lewis P, Foster M, Disney M, Muller JP (2012) Measuring forests with dual wavelength lidar: a simulation study over topography. Agric For Meteorol 161:123–133

    Google Scholar 

  • Hansen PM, Schjoerring JK (2003) Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression. Remote Sens Environ 86(4):542–553

    Google Scholar 

  • Harris A, Charnock R, Lucas R (2015) Hyperspectral remote sensing of peatland floristic gradients. Remote Sens Environ 162:99–111

    Google Scholar 

  • Haykin S (1999) Neural networks—a comprehensive foundation, 2nd edn. Prentice Hall, Upper Saddle

    Google Scholar 

  • He R, Qiao X, Jiang J, Guo H (2015) Retrieving canopy leaf total nitrogen content of winter wheat by continuous wavelet transform. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 31(2):141–146

    Google Scholar 

  • Heiskanen J, Rautiainen M, Stenberg P, Mõttus M, Vesanto VH (2013) Sensitivity of narrowband vegetation indices to boreal forest LAI, reflectance seasonality and species composition. ISPRS J Photogramm Remote Sens 78:1–14

    Google Scholar 

  • Hernández-Clemente R, North P, Hornero A, Zarco-Tejada P (2017) Assessing the effects of forest health on sun-induced chlorophyll fluorescence using the FluorFLIGHT 3-D radiative transfer model to account for forest structure. Remote Sens Environ 193:165–179

    Google Scholar 

  • Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735–1780

    Google Scholar 

  • Homolová L, Janoutová R, Malenovský Z (2016) Evaluation of various spectral inputs for estimation of forest biochemical and structural properties from airborne imaging spectroscopy data. 41:961–966

  • Huang Z, Turner BJ, Dury SJ, Wallis IR, Foley WJ (2004) Estimating foliage nitrogen concentration from HYMAP data using continuum removal analysis. Remote Sens Environ 93(1):18–29

    Google Scholar 

  • Huang Y, Tian Q, Wang L, Geng J, Lyu C (2014) Estimating canopy leaf area index in the late stages of wheat growth using continuous wavelet transform. J Appl Remote Sens 8(1):083517

    Google Scholar 

  • Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55–63

    Google Scholar 

  • Im J, Jensen JR, Coleman M, Nelson E (2009) Hyperspectral remote sensing analysis of short rotation woody crops grown with controlled nutrient and irrigation treatments. Geocarto Int 24(4):293–312

    Google Scholar 

  • Jacquemoud S, Baret F, Andrieu B, Danson FM, Jaggard K (1995) Extraction of vegetation biophysical parameters by inversion of the PROSPECT+SAIL models on sugar beet canopy reflectance data. Application to TM and AVIRIS sensors. Remote Sens Environ 52(3):163–172

    Google Scholar 

  • Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P, Asner G, François C, Ustin S (2009a) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113(SUPPL. 1):S56–S66

    Google Scholar 

  • Jacquemoud S, Verhoef W, Baret F, Bacour C, Zarco-Tejada P, Asner G, François C, Ustin S (2009b) PROSPECT + SAIL models: a review of use for vegetation characterization. Remote Sens Environ 113(SUPPL. 1):S56–S66

    Google Scholar 

  • Jay S, Bendoula R, Hadoux X, Féret JB, Gorretta N (2016) A physically-based model for retrieving foliar biochemistry and leaf orientation using close-range imaging spectroscopy. Remote Sens Environ 177:220–236

    Google Scholar 

  • Jensen R, Hardin P, Hardin A (2012) Estimating urban leaf area index (LAI) of individual trees with hyperspectral data. Photogramm Eng Remote Sens 78(5):495–504

    Google Scholar 

  • Jia F, Liu G, Liu D, Zhang Y, Fan W, Xing X (2013) Comparison of different methods for estimating nitrogen concentration in flue-cured tobacco leaves based on hyperspectral reflectance. Field Crops Res 150:108–114

    Google Scholar 

  • Kalacska M, Lalonde M, Moore T (2015) Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image. Remote Sens Environ 169:270–279

    Google Scholar 

  • Kanke Y, Tubaña B, Dalen M, Harrell D (2016) Evaluation of red and red-edge reflectance-based vegetation indices for rice biomass and grain yield prediction models in paddy fields. Precis Agric 17(5):507–530

    Google Scholar 

  • Karimi Y, Prasher S, Madani A, Kim S (2008) Application of support vector machine technology for the estimation of crop biophysical parameters using aerial hyperspectral observations. Can Biosyst Eng/Le Genie des biosystems au Canada 50:7.13–7.20

    Google Scholar 

  • Kattenborn T, Fassnacht F, Pierce S, Lopatin J, Grime J, Schmidtlein S (2017) Linking plant strategies and plant traits derived by radiative transfer modelling. J Veg Sci 28(4):717–727

    Google Scholar 

  • Kempeneers P, Zarco-Tejada PJ, North PRJ, de Backer S, Delalieux S, Sepulcre-Cantó G, Morales F, van Aardt JAN, Sagardoy R, Coppin P, Scheunders P (2008) Model inversion for chlorophyll estimation in open canopies from hyperspectral imagery. Int J Remote Sens 29(17–18):5093–5111

    Google Scholar 

  • Kiala Z, Odindi J, Mutanga O, Peerbhay K (2016) Comparison of partial least squares and support vector regressions for predicting leaf area index on a tropical grassland using hyperspectral data. J Appl Remote Sens 10(3):036015

    Google Scholar 

  • Kimes DS, Nelson RF, Manry MT, Fung AK (1998) Attributes of neural networks for extracting continuous vegetation variables from optical and radar measurements. Int J Remote Sens 19(14):2639–2662

    Google Scholar 

  • Kira O, Nguy-Robertson A, Arkebauer T, Linker R, Gitelson A (2016) Informative spectral bands for remote green LAI estimation in C3 and C4 crops. Agric For Meteorol 218–219:243–249

    Google Scholar 

  • Knox N, Skidmore A, Prins H, Asner G, van der Werff H, de Boer W, van der Waal C, de Knegt H, Kohi E, Slotow R, Grant R (2011) Dry season mapping of savanna forage quality, using the hyperspectral Carnegie Airborne Observatory sensor. Remote Sens Environ 115(6):1478–1488

    Google Scholar 

  • Knyazikhin Y, Schull MA, Stenberg P, Mõttus M, Rautiainen M, Yang Y, Marshak A, Carmona PL, Kaufmann RK, Lewis P et al (2013) Hyperspectral remote sensing of foliar nitrogen content. Proc Natl Acad Sci 110(3):E185–E192

    Google Scholar 

  • Koetz B, Baret F, Poilvé H, Hill J (2005) Use of coupled canopy structure dynamic and radiative transfer models to estimate biophysical canopy characteristics. Remote Sens Environ 95(1):115–124

    Google Scholar 

  • Kováč D, Malenovský Z, Urban O, Špunda V, Kalina J, Ač A, Kaplan V, Hanuš J (2013) Response of green reflectance continuum removal index to the xanthophyll de-epoxidation cycle in norway spruce needles. J Exp Bot 64(7):1817–1827

    Google Scholar 

  • Labate D, Ceccherini M, Cisbani A, De Cosmo V, Galeazzi C, Giunti L, Melozzi M, Pieraccini S, Stagi M (2009) The PRISMA payload optomechanical design: a high performance instrument for a new hyperspectral mission. Acta Astronautica 65(9–10):1429–1436

    Google Scholar 

  • Laurent V, Verhoef W, Damm A, Schaepman M, Clevers J (2013) A Bayesian object-based approach for estimating vegetation biophysical and biochemical variables from APEX at-sensor radiance data. Remote Sens Environ 139:6–17

    Google Scholar 

  • Laurent V, Schaepman M, Verhoef W, Weyermann J, Chávez R (2014) Bayesian object-based estimation of LAI and chlorophyll from a simulated Sentinel-2 top-of-atmosphere radiance image. Remote Sens Environ 140:318–329

    Google Scholar 

  • Lazaridis DC, Verbesselt J, Robinson AP (2010) Penalized regression techniques for prediction: a case study for predicting tree mortality using remotely sensed vegetation indices. Can J For Res 41(1):24–34

    Google Scholar 

  • Lazaro-Gredilla M, Titsias M, Verrelst J, Camps-Valls G (2014) Retrieval of biophysical parameters with heteroscedastic Gaussian processes. IEEE Geosci Remote Sens Lett 11(4):838–842

    Google Scholar 

  • le Maire G, François C, Dufrene E (2004) Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sens Environ 89(1):1–28

    Google Scholar 

  • le Maire G, François C, Soudani K, Berveiller D, Pontailler JY, Bréda N, Genet H, Davi H, Dufrêne E (2008) Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens Environ 112(10):3846–3864

    Google Scholar 

  • Lee CM, Cable ML, Hook SJ, Green RO, Ustin SL, Mandl DJ, Middleton EM (2015) An introduction to the NASA hyperspectral infrared imager (HyspIRI) mission and preparatory activities. Remote Sens Environ 167:6–19. https://doi.org/10.1016/j.rse.2015.06.012 (Special Issue on the Hyperspectral Infrared Imager (HyspIRI))

    Google Scholar 

  • Leonenko G, North P, Los S (2013) Statistical distances and their applications to biophysical parameter estimation: information measures, M-estimates, and minimum contrast methods. Remote Sens 5(3):1355–1388

    Google Scholar 

  • Lewis P (1999) Three-dimensional plant modelling for remote sensing simulation studies using the botanical plant modelling system. Agronomie 19(3–4):185–210

    Google Scholar 

  • Lewis P, Muller J (1993) The advanced radiometric ray tracer: ararat for plant canopy reflectance simulation. Int Arch Photogramm Remote Sens 29:26–26

    Google Scholar 

  • Lewis P, Muller J (1990) Botanical plant modelling for remote sensing simulation studies. In: 10th Annual International on Geoscience and Remote Sensing Symposium, 1990. IGARSS’90.’Remote Sensing Science for the Nineties’, IEEE, pp 1739–1742

  • Li L, Zhang Q, Huang D (2014a) A review of imaging techniques for plant phenotyping. Sensors (Switzerland) 14(11):20078–20111

    Google Scholar 

  • Li X, Liu X, Liu M, Wu L (2014b) Random forest algorithm and regional applications of spectral inversion model for estimating canopy nitrogen concentration in rice. Yaogan Xuebao/J Remote Sens 18(4):934–945

    Google Scholar 

  • Li D, Cheng T, Zhou K, Zheng H, Yao X, Tian Y, Zhu Y, Cao W (2017) WREP: a wavelet-based technique for extracting the red edge position from reflectance spectra for estimating leaf and canopy chlorophyll contents of cereal crops. ISPRS J Photogramm Remote Sens 129:103–117

    Google Scholar 

  • Liang L, Di L, Zhang L, Deng M, Qin Z, Zhao S, Lin H (2015) Estimation of crop LAI using hyperspectral vegetation indices and a hybrid inversion method. Remote Sens Environ 165:123–134

    Google Scholar 

  • Liang L, Qin Z, Zhao S, Di L, Zhang C, Deng M, Lin H, Zhang L, Wang L, Liu Z (2016) Estimating crop chlorophyll content with hyperspectral vegetation indices and the hybrid inversion method. Int J Remote Sens 37(13):2923–2949

    Google Scholar 

  • Lin H, Liang L, Zhang L, Du P (2013) Wheat leaf area index inversion with hyperspectral remote sensing based on support vector regression algorithm. Nongye Gongcheng Xuebao/Trans Chin Soc Agric Eng 29(11):139–146

    Google Scholar 

  • Liu WY, Pan J (2017) A hyperspectral assessment model for leaf chlorophyll content of Pinus massoniana based on neural network. Chin J Appl Ecol 28(4):1128–1136

    Google Scholar 

  • Locherer M, Hank T, Danner M, Mauser W (2015) Retrieval of seasonal leaf area index from simulated EnMAP data through optimized LUT-based inversion of the PROSAIL model. Remote Sens 7(8):10321–10346

    Google Scholar 

  • Luo J, Huang W, Zhao J, Zhang J, Zhao C, Ma R (2013) Detecting aphid density of winter wheat leaf using hyperspectral measurements. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):690–698

    Google Scholar 

  • Malenovský Z, Ufer C, Lhotakova Z, Clevers J, Schaepman M, Albrechtova J, Cudlin P (2006) A new hyperspectral index for chlorophyll estimation of a forest canopy: area under curve normalised to maximal band depth between 650 and 725 nm. EARSeL EProc 5(2):161–172

    Google Scholar 

  • Malenovský Z, Homolová L, Zurita-Milla R, Lukeš P, Kaplan V, Hanuš J, Gastellu-Etchegorry JP, Schaepman ME (2013) Retrieval of spruce leaf chlorophyll content from airborne image data using continuum removal and radiative transfer. Remote Sens Environ 131:85–102

    Google Scholar 

  • Malenovský Z, Turnbull JD, Lucieer A, Robinson SA (2015) Antarctic moss stress assessment based on chlorophyll content and leaf density retrieved from imaging spectroscopy data. New Phytol 208(2):608–624

    Google Scholar 

  • Malenovský Z, Lucieer A, King DH, Turnbull JD, Robinson SA (2017) Unmanned aircraft system advances health mapping of fragile polar vegetation. Methods Ecol Evol 8(12):1842–1857

    Google Scholar 

  • Marabel M, Alvarez-Taboada F (2013) Spectroscopic determination of aboveground biomass in grasslands using spectral transformations, support vector machine and partial least squares regression. Sensors (Switzerland) 13(8):10027–10051

    Google Scholar 

  • Mariotto I, Thenkabail P, Huete A, Slonecker E, Platonov A (2013) Hyperspectral versus multispectral crop-productivity modeling and type discrimination for the HyspIRI mission. Remote Sens Environ 139:291–305

    Google Scholar 

  • Marshall M, Thenkabail P (2014) Biomass modeling of four leading world crops using hyperspectral narrowbands in support of HyspIRI mission. Photogramm Eng Remote Sens 80(8):757–772

    Google Scholar 

  • Matthes J, Knox S, Sturtevant C, Sonnentag O, Verfaillie J, Baldocchi D (2015) Predicting landscape-scale CO2 flux at a pasture and rice paddy with long-term hyperspectral canopy reflectance measurements. Biogeosciences 12(15):4577–4594

    Google Scholar 

  • Matthews M (2011) A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int J Remote Sens 32(21):6855–6899

    Google Scholar 

  • Meroni M, Colombo R, Panigada C (2004) Inversion of a radiative transfer model with hyperspectral observations for LAI mapping in poplar plantations. Remote Sens Environ 92(2):195–206

    Google Scholar 

  • Miller J, Hare E, Wu J (1990) Quantitative characterization of the vegetation red edge reflectance 1. An inverted-Gaussian reflectance model. Remote Sens 11(10):1755–1773

    Google Scholar 

  • Miphokasap P, Honda K, Vaiphasa C, Souris M, Nagai M (2012) Estimating canopy nitrogen concentration in sugarcane using field imaging spectroscopy. Remote Sens 4(6):1651–1670

    Google Scholar 

  • Mitchell JJ, Glenn NF, Sankey TT, Derryberry DR, Germino MJ (2012) Remote sensing of sagebrush canopy nitrogen. Remote Sens Environ 124:217–223

    Google Scholar 

  • Montesano P, Rosette J, Sun G, North P, Nelson R, Dubayah R, Ranson K, Kharuk V (2015) The uncertainty of biomass estimates from modeled ICESat-2 returns across a boreal forest gradient. Remote Sens Environ 158:95–109

    Google Scholar 

  • Morton DC, Nagol J, Carabajal CC, Rosette J, Palace M, Cook BD, Vermote EF, Harding DJ, North PR (2014) Amazon forests maintain consistent canopy structure and greenness during the dry season. Nature 506(7487):221–224

    Google Scholar 

  • Mulder V, de Bruin S, Schaepman M, Mayr T (2011) The use of remote sensing in soil and terrain mapping—a review. Geoderma 162(1–2):1–19

    Google Scholar 

  • Mutanga O, Kumar L (2007) Estimating and mapping grass phosphorus concentration in an African savanna using hyperspectral image data. Int J Remote Sens 28(21):4897–4911

    Google Scholar 

  • Mutanga O, Skidmore AK (2004) Narrow band vegetation indices overcome the saturation problem in biomass estimation. Int J Remote Sens 25(19):3999–4014

    Google Scholar 

  • Mutanga O, Skidmore AK, Kumar L, Ferwerda J (2005) Estimating tropical pasture quality at canopy level using band depth analysis with continuum removal in the visible domain. Int J Remote Sens 26(6):1093–1108

    Google Scholar 

  • Myneni R, Maggion S, Iaquinta J, Privette J, Gobron N, Pinty B, Kimes D, Verstraete M, Williams D (1995) Optical remote sensing of vegetation: modeling, caveats, and algorithms. Remote Sens Environ 51(1):169–188

    Google Scholar 

  • Neinavaz E, Skidmore A, Darvishzadeh R, Groen T (2016) Retrieval of leaf area index in different plant species using thermal hyperspectral data. ISPRS J Photogramm Remote Sens 119:390–401

    Google Scholar 

  • Neumann C, Förster M, Kleinschmit B, Itzerott S (2016) Utilizing a PLSR-based band-selection procedure for spectral feature characterization of floristic gradients. IEEE J Sel Top Appl Earth Observ Remote Sens 9(9):3982–3996

    Google Scholar 

  • North P (1996) Three-dimensional forest light interaction model using a monte carlo method. IEEE Trans Geosci Remote Sens 34(4):946–956

    Google Scholar 

  • North P, Rosette J, Suárez J, Los S (2010) A Monte Carlo radiative transfer model of satellite waveform LiDAR. Int J Remote Sens 31(5):1343–1358

    Google Scholar 

  • Ollinger S (2011) Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol 189(2):375–394

    Google Scholar 

  • Omari K, White H, Staenz K, King D (2013) Retrieval of forest canopy parameters by inversion of the proflair leaf-canopy reflectance model using the lut approach. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):715–723

    Google Scholar 

  • Oppelt N, Mauser W (2004) Hyperspectral monitoring of physiological parameters of wheat during a vegetation period using avis data. Int J Remote Sens 25(1):145–159

    Google Scholar 

  • Paruelo J, Tomasel F (1997) Prediction of functional characteristics of ecosystems: a comparison of artificial neural networks and regression models. Ecol Model 98(2–3):173–186

    Google Scholar 

  • Pasqualotto N, Delegido J, Wittenberghe SV, Verrelst J, Rivera JP, Moreno J (2018) Retrieval of canopy water content of different crop types with two new hyperspectral indices: water absorption area index and depth water index. Int J Appl Earth Observ Geoinf 67:69–78

    Google Scholar 

  • Peng Y, Huang H, Wang W, Wu J, Wang X (2011) Rapid detection of chlorophyll content in corn leaves by using least squares-support vector machines and hyperspectral images. Jiangsu Daxue Xuebao (Ziran Kexue Ban)/J Jiangsu Univ (Nat Sci Edn) 32(2):125–128+174

    Google Scholar 

  • Penuelas J, Gamon JA, Fredeen AL, Merino J, Field CB (1994) Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sens Environ 48(2):135–146

    Google Scholar 

  • Pham T, Yoshino K, Bui D (2017) Biomass estimation of Sonneratia caseolaris (l.) Engler at a coastal area of Hai Phong city (Vietnam) using ALOS-2 PALSAR imagery and GIS-based multi-layer perceptron neural networks. GISci Remote Sens 54(3):329–353

    Google Scholar 

  • Pinty B, Gobron N, Widlowski JL, Gerstl S, Verstraete M, Antunes M, Bacour C, Gascon F, Gastellu JP, Goel N, Jacquemoud S, North P, Qin W, Thompson R (2001) Radiation transfer model intercomparison (RAMI) exercise. J Geophys Res D Atmos 106(D11):11937–11956

    Google Scholar 

  • Pinty B, Widlowski JL, Taberner M, Gobron N, Verstraete M, Disney M, Gascon F, Gastellu JP, Jiang L, Kuusk A, Lewis P, Li X, Ni-Meister W, Nilson T, North P, Qin W, Su L, Tang S, Thompson R, Verhoef W, Wang H, Wang J, Yan G, Zang H (2004) Radiation Transfer Model Intercomparison (RAMI) exercise: results from the second phase. J Geophys Res D Atmos 109(6):D06210

    Google Scholar 

  • Pôças I, Gonçalves J, Costa P, Gonçalves I, Pereira L, Cunha M (2017) Hyperspectral-based predictive modelling of grapevine water status in the Portuguese Douro wine region. Int J Appl Earth Observ Geoinf 58:177–190

    Google Scholar 

  • Preidl S, Doktor D (2011) Comparison of radiative transfer model inversions to estimate vegetation physiological status based on hyperspectral data​. 3rd workshop on hyperspectral image and signal processing: evolution in remote sensing (WHISPERS)

  • Pu R, Gong P, Biging GS, Larrieu MR (2003) Extraction of red edge optical parameters from Hyperion data for estimation of forest leaf area index. IEEE Trans Geosci Remote Sens 41(4):916–921

    Google Scholar 

  • Pullanagari R, Kereszturi G, Yule I (2016) Mapping of macro and micro nutrients of mixed pastures using airborne AisaFENIX hyperspectral imagery. ISPRS J Photogramm Remote Sens 117:1–10

    Google Scholar 

  • Ramoelo A, Skidmore AK, Schlerf M, Mathieu R, Heitkönig IM (2011) Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations. ISPRS J Photogramm Remote Sens 66(4):408–417

    Google Scholar 

  • Rasmussen CE, Williams CKI (2006) Gaussian processes for machine learning. The MIT Press, New York

    Google Scholar 

  • Rivard B, Feng J, Gallie A, Sanchez-Azofeifa A (2008) Continuous wavelets for the improved use of spectral libraries and hyperspectral data. Remote Sens Environ 112(6):2850–2862

    Google Scholar 

  • Rivera Caicedo J, Verrelst J, Muñoz-Marí J, Moreno J, Camps-Valls G (2014) Toward a semiautomatic machine learning retrieval of biophysical parameters. IEEE J Sel Top Appl Earth Observ Remote Sens 7(4):1249–1259

    Google Scholar 

  • Rivera J, Verrelst J, Leonenko G, Moreno J (2013) Multiple cost functions and regularization options for improved retrieval of leaf chlorophyll content and LAI through inversion of the PROSAIL model. Remote Sens 5(7):3280–3304

    Google Scholar 

  • Rivera J, Verrelst J, Delegido J, Veroustraete F, Moreno J (2014) On the semi-automatic retrieval of biophysical parameters based on spectral index optimization. Remote Sens 6(6):4924–4951

    Google Scholar 

  • Rivera JP, Verrelst J, Gómez-Dans J, Muñoz Marí J, Moreno J, Camps-Valls G (2015) An emulator toolbox to approximate radiative transfer models with statistical learning. Remote Sens 7(7):9347

    Google Scholar 

  • Rivera-Caicedo JP, Verrelst J, Muñoz-Marí J, Camps-Valls G, Moreno J (2017) Hyperspectral dimensionality reduction for biophysical variable statistical retrieval. ISPRS J Photogramm Remote Sens 132:88–101

    Google Scholar 

  • Roelofsen HD, Kooistra L, van Bodegom PM, Verrelst J, Krol J, Witte JPM (2014) Mapping a priori defined plant associations using remotely sensed vegetation characteristics. Remote Sens Environ 140:639–651

    Google Scholar 

  • Roth K, Roberts D, Dennison P, Alonzo M, Peterson S, Beland M (2015) Differentiating plant species within and across diverse ecosystems with imaging spectroscopy. Remote Sens Environ 167:135–151

    Google Scholar 

  • Saich P, Lewis P, Disney M, Thackrah G (2002) Comparison of Hymap/E-SAR data with models for optial reflectance and microwave scattering from vegetation canopies. Retriev Bio Geo Phys Parameters SAR Data Land Appl 475:75–80

    Google Scholar 

  • Sanches I, Souza Filho C, Kokaly R (2014) Spectroscopic remote sensing of plant stress at leaf and canopy levels using the chlorophyll 680 nm absorption feature with continuum removal. ISPRS J Photogramm Remote Sens 97:111–122

    Google Scholar 

  • Scafutto R, de Souza Filho C, Rivard B (2016) Characterization of mineral substrates impregnated with crude oils using proximal infrared hyperspectral imaging. Remote Sens Environ 179:116–130

    Google Scholar 

  • Schlerf M, Atzberger C (2006) Inversion of a forest reflectance model to estimate structural canopy variables from hyperspectral remote sensing data. Remote Sens Environ 100(3):281–294

    Google Scholar 

  • Schlerf M, Atzberger C, Hill J (2005) Remote sensing of forest biophysical variables using HyMap imaging spectrometer data. Remote Sens Environ 95(2):177–194

    Google Scholar 

  • Schlerf M, Atzberger C, Hill J, Buddenbaum H, Werner W, Schüler G (2010) Retrieval of chlorophyll and nitrogen in Norway spruce (Picea abies L. Karst.) using imaging spectroscopy. Int J Appl Earth Observ Geoinf 12(1):17–26

    Google Scholar 

  • Shiklomanov A, Dietze M, Viskari T, Townsend P, Serbin S (2016) Quantifying the influences of spectral resolution on uncertainty in leaf trait estimates through a Bayesian approach to RTM inversion. Remote Sens Environ 183:226–238

    Google Scholar 

  • Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81(2–3):337–354

    Google Scholar 

  • Stimson HC, Breshears DD, Ustin SL, Kefauver SC (2005) Spectral sensing of foliar water conditions in two co-occurring conifer species: Pinus edulis and Juniperus monosperma. Remote Sens Environ 96(1):108–118

    Google Scholar 

  • Suykens J, Vandewalle J (1999) Least squares support vector machine classifiers. Neural Process Lett 9(3):293–300

    Google Scholar 

  • Thenkabail P, Smith R, De Pauw E (2000) Hyperspectral vegetation indices and their relationships with agricultural crop characteristics. Remote Sens Environ 71(2):158–182

    Google Scholar 

  • Tian Y, Yao X, Yang J, Cao W, Zhu Y (2011) Extracting red edge position parameters from ground- and space-based hyperspectral data for estimation of canopy leaf nitrogen concentration in rice. Plant Product Sci 14(3):270–281

    Google Scholar 

  • Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Stat Soc Ser B (Methodological) 58:267–288

    Google Scholar 

  • Tuia D, Verrelst J, Alonso L, Pérez-Cruz F, Camps-Valls G (2011) Multioutput support vector regression for remote sensing biophysical parameter estimation. IEEE Geosci Remote Sens Lett 8(4):804–808

    Google Scholar 

  • Tuia D, Volpi M, Verrelst J, Camps-Valls G (2018) Advances in kernel machines for image classification and biophysical parameter retrieval. In: Moser G, Zerubia J (eds) Mathematical models for remote sensing image processing. Signals and communication technology. Springer, Cham, pp 399–441

    Google Scholar 

  • Uno Y, Prasher S, Lacroix R, Goel P, Karimi Y, Viau A, Patel R (2005) Artificial neural networks to predict corn yield from compact airborne spectrographic imager data. Comput Electron Agric 47(2):149–161

    Google Scholar 

  • Vaglio Laurin G, Cheung-Wai Chan J, Chen Q, Lindsell J, Coomes D, Guerriero L, Del Frate F, Miglietta F, Valentini R (2014) Biodiversity mapping in a tropical West African forest with airborne hyperspectral data. PLoS ONE 9(6):e97910

    Google Scholar 

  • Van Der Tol C, Verhoef W, Timmermans J, Verhoef A, Su Z (2009) An integrated model of soil-canopy spectral radiances, photosynthesis, fluorescence, temperature and energy balance. Biogeosciences 6(12):3109–3129

    Google Scholar 

  • Van Der Tol C, Berry J, Campbell P, Rascher U (2014) Models of fluorescence and photosynthesis for interpreting measurements of solar-induced chlorophyll fluorescence. J Geophys Res Biogeosci 119:2312–2327

    Google Scholar 

  • van der Tol C, Rossini M, Cogliati S, Verhoef W, Colombo R, Rascher U, Mohammed G (2016) A model and measurement comparison of diurnal cycles of sun-induced chlorophyll fluorescence of crops. Remote Sens Environ 186:663–677

    Google Scholar 

  • Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. Adv Neural Inf Process Syst 9:281–287

    Google Scholar 

  • Verhoef W (1984a) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16(2):125–141

    Google Scholar 

  • Verhoef W (1984b) Light scattering by leaf layers with application to canopy reflectance modeling: the SAIL model. Remote Sens Environ 16(2):125–141

    Google Scholar 

  • Verhoef W (1985) Earth observation modeling based on layer scattering matrices. Remote Sens Environ 17(2):165–178

    Google Scholar 

  • Verrelst J, Schaepman M, Koetz B, Kneubuhler M (2008) Angular sensitivity analysis of vegetation indices derived from CHRIS/PROBA data. Remote Sens Environ 112(5):2341–2353

    Google Scholar 

  • Verrelst J, Schaepman ME, Malenovský Z, Clevers JGPW (2010) Effects of woody elements on simulated canopy reflectance: implications for forest chlorophyll content retrieval. Remote Sens Environ 114(3):647–656

    Google Scholar 

  • Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J (2012a) Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens 50(5 PART 2):1832–1843

    Google Scholar 

  • Verrelst J, Alonso L, Camps-Valls G, Delegido J, Moreno J (2012b) Retrieval of vegetation biophysical parameters using Gaussian process techniques. IEEE Trans Geosci Remote Sens 50(5 PART 2):1832–1843

    Google Scholar 

  • Verrelst J, Romijn E, Kooistra L (2012c) Mapping vegetation density in a heterogeneous river floodplain ecosystem using pointable CHRIS/PROBA data. Remote Sens 4(9):2866–2889

    Google Scholar 

  • Verrelst J, Alonso L, Rivera Caicedo J, Moreno J, Camps-Valls G (2013a) Gaussian process retrieval of chlorophyll content from imaging spectroscopy data. IEEE J Sel Top Appl Earth Observ Remote Sens 6(2):867–874

    Google Scholar 

  • Verrelst J, Rivera J, Moreno J, Camps-Valls G (2013b) Gaussian processes uncertainty estimates in experimental Sentinel-2 LAI and leaf chlorophyll content retrieval. ISPRS J Photogramm Remote Sens 86:157–167

    Google Scholar 

  • Verrelst J, Rivera J, Leonenko G, Alonso L, Moreno J (2014) Optimizing LUT-based RTM inversion for semiautomatic mapping of crop biophysical parameters from sentinel-2 and -3 data: role of cost functions. IEEE Trans Geosci Remote Sens 52(1):257–269

    Google Scholar 

  • Verrelst J, Camps-Valls G, Muñoz Marí J, Rivera J, Veroustraete F, Clevers J, Moreno J (2015) Optical remote sensing and the retrieval of terrestrial vegetation bio-geophysical properties—a review. ISPRS J Photogramm Remote Sens 108:273–290

    Google Scholar 

  • Verrelst J, Dethier S, Rivera JP, Munoz-Mari J, Camps-Valls G, Moreno J (2016a) Active learning methods for efficient hybrid biophysical variable retrieval. IEEE Geosci Remote Sens Lett 13(7):1012–1016

    Google Scholar 

  • Verrelst J, Rivera JP, Gitelson A, Delegido J, Moreno J, Camps-Valls G (2016b) Spectral band selection for vegetation properties retrieval using Gaussian processes regression. Int J Appl Earth Observ Geoinf 52:554–567

    Google Scholar 

  • Verrelst J, Sabater N, Rivera JP, Muñoz Marí J, Vicent J, Camps-Valls G, Moreno J (2016c) Emulation of leaf, canopy and atmosphere radiative transfer models for fast global sensitivity analysis. Remote Sens 8(8):673

    Google Scholar 

  • Verrelst J, Rivera Caicedo J, Muñoz Marí J, Camps-Valls G, Moreno J (2017) SCOPE-based emulators for fast generation of synthetic canopy reflectance and sun-induced fluorescence Spectra. Remote Sens 9(9):927

    Google Scholar 

  • Vilfan N, van der Tol C, Muller O, Rascher U, Verhoef W (2016) Fluspect-B: a model for leaf fluorescence, reflectance and transmittance spectra. Remote Sens Environ 186:596–615

    Google Scholar 

  • Vohland M, Mader S, Dorigo W (2010) Applying different inversion techniques to retrieve stand variables of summer barley with PROSPECT + SAIL. Int J Appl Earth Observ Geoinf 12(2):71–80

    Google Scholar 

  • Wang F, Huang J, Lou Z (2011) A comparison of three methods for estimating leaf area index of paddy rice from optimal hyperspectral bands. Precis Agric 12(3):439–447

    Google Scholar 

  • Wang F, Huang J, Wang Y, Liu Z, Peng D, Cao F (2013) Monitoring nitrogen concentration of oilseed rape from hyperspectral data using radial basis function. Int J Digital Earth 6(6):550–562

    Google Scholar 

  • Wang J, Wang T, Skidmore A, Shi T, Wu G (2015) Evaluating different methods for grass nutrient estimation from canopy hyperspectral reflectance. Remote Sens 7(5):5901–5917

    Google Scholar 

  • Wang B, Chen J, Ju W, Qiu F, Zhang Q, Fang M, Chen F (2017a) Limited effects of water absorption on reducing the accuracy of leaf nitrogen estimation. Remote Sens 9(3):291

    Google Scholar 

  • Wang J, Shen C, Liu N, Jin X, Fan X, Dong C, Xu Y (2017b) Non-destructive evaluation of the leaf nitrogen concentration by in-field visible/near-infrared spectroscopy in pear orchards. Sensors (Switzerland) 17(3):538

    Google Scholar 

  • Widlowski JL, Pinty B, Clerici M, Dai Y, De Kauwe M, De Ridder K, Kallel A, Kobayashi H, Lavergne T, Ni-Meister W, Olchev A, Quaife T, Wang S, Yang W, Yang Y, Yuan H (2011) RAMI4PILPS: an intercomparison of formulations for the partitioning of solar radiation in land surface models. J Geophys Res G Biogeosci. https://doi.org/10.1029/2010JG001511

    Google Scholar 

  • Widlowski JL, Taberner M, Pinty B, Bruniquel-Pinel V, Disney M, Fernandes R, Gastellu-Etchegorry JP, Gobron N, Kuusk A, Lavergne T, Leblanc S, Lewis P, Martin E, Mättus M, North P, Qin W, Robustelli M, Rochdi N, Ruiloba R, Soler C, Thompson R, Verhoef W, Verstraete M, Xie D (2007) Third radiation transfer model intercomparison (RAMI) exercise: documenting progress in canopy reflectance models. J Geophys Res D Atmos 112(9):D09111

    Google Scholar 

  • Widlowski JL, Mio C, Disney M, Adams J, Andredakis I, Atzberger C, Brennan J, Busetto L, Chelle M, Ceccherini G et al (2015) The fourth phase of the radiative transfer model intercomparison (RAMI) exercise: actual canopy scenarios and conformity testing. Remote Sens Environ 169:418–437

    Google Scholar 

  • Wold S, Esbensen K, Geladi P (1987) Principal component analysis. Chemom Intell Lab Syst 2(1–3):37–52

    Google Scholar 

  • Xue J, Su B (2017) Significant remote sensing vegetation indices: a review of developments and applications. J Sens. https://doi.org/10.1155/2017/1353691

    Google Scholar 

  • Yang X, Huang J, Wu Y, Wang J, Wang P, Wang X, Huete A (2011) Estimating biophysical parameters of rice with remote sensing data using support vector machines. Sci China Life Sci 54(3):272–281

    Google Scholar 

  • Yang P, Verhoef W, van der Tol C (2017) The mSCOPE model: a simple adaptation to the SCOPE model to describe reflectance, fluorescence and photosynthesis of vertically heterogeneous canopies. Remote Sens Environ 201:1–11

    Google Scholar 

  • Yao X, Huang Y, Shang G, Zhou C, Cheng T, Tian Y, Cao W, Zhu Y (2015) Evaluation of six algorithms to monitor wheat leaf nitrogen concentration. Remote Sens 7(11):14939–14966

    Google Scholar 

  • Ye X, Sakai K, Manago M, Asada SI, Sasao A (2007) Prediction of citrus yield from airborne hyperspectral imagery. Precis Agric 8(3):111–125

    Google Scholar 

  • Yi Q, Jiapaer G, Chen J, Bao A, Wang F (2014) Different units of measurement of carotenoids estimation in cotton using hyperspectral indices and partial least square regression. ISPRS J Photogramm Remote Sens 91:72–84

    Google Scholar 

  • Yin T, Lauret N, Gastellu-Etchegorry JP (2016) Simulation of satellite, airborne and terrestrial LiDAR with DART (II): ALS and TLS multi-pulse acquisitions, photon counting, and solar noise. Remote Sens Environ 184:454–468

    Google Scholar 

  • Yue J, Yang G, Li C, Li Z, Wang Y, Feng H, Xu B (2017) Estimation of winter wheat above-ground biomass using unmanned aerial vehicle-based snapshot hyperspectral sensor and crop height improved models. Remote Sens 9(7):708

    Google Scholar 

  • Zandler H, Brenning A, Samimi C (2015) Quantifying dwarf shrub biomass in an arid environment: comparing empirical methods in a high dimensional setting. Remote Sens Environ 158:140–155

    Google Scholar 

  • Zarco-Tejada P, Miller J, Noland T, Mohammed G, Sampson P (2001) Scaling-up and model inversion methods with narrowband optical indices for chlorophyll content estimation in closed forest canopies with hyperspectral data. IEEE Trans Geosci Remote Sens 39(7):1491–1507

    Google Scholar 

  • Zarco-Tejada P, Miller J, Mohammed G, Noland T, Sampson P (2002) Vegetation stress detection through chlorophyll+ estimation and fluorescence effects on hyperspectral imagery. J Environ Qual 31(5):1433–1441

    Google Scholar 

  • Zhang S, Wang Q (2015) Inverse retrieval of chlorophyll from reflected spectra for assimilating branches of drought-tolerant Tamarix ramosissima. IEEE J Sel Top Appl Earth Observ Remote Sens 8(4):1498–1505

    Google Scholar 

  • Zhang Y, Chen J, Miller J, Noland T (2008) Leaf chlorophyll content retrieval from airborne hyperspectral remote sensing imagery. Remote Sens Environ 112(7):3234–3247

    Google Scholar 

Download references

Acknowledgements

Jochem Verrelst was supported by the European Research Council (ERC) under the ERC-2017-STG SENTIFLEX project (grant agreement 755617). Contribution of Zbyněk Malenovský was supported by the Australian Research Council Future Fellowship: Bridging scales in remote sensing of vegetation stress (FT160100477). Gustau Camps-Valls was supported by the ERC under the ERC-CoG-2014 SEDAL project (grant agreement 647423). We thank the two reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochem Verrelst.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verrelst, J., Malenovský, Z., Van der Tol, C. et al. Quantifying Vegetation Biophysical Variables from Imaging Spectroscopy Data: A Review on Retrieval Methods. Surv Geophys 40, 589–629 (2019). https://doi.org/10.1007/s10712-018-9478-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-018-9478-y

Keywords

Navigation