Skip to main content
Log in

High-Resolution Characterization of Near-Surface Structures by Surface-Wave Inversions: From Dispersion Curve to Full Waveform

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Surface waves are widely used in near-surface geophysics and provide a noninvasive way to determine near-surface structures. By extracting and inverting dispersion curves to obtain local 1D S-wave velocity profiles, multichannel analysis of surface waves (MASW) has been proven as an efficient way to analyze shallow-seismic surface waves. By directly inverting the observed waveforms, full-waveform inversion (FWI) provides another feasible way to use surface waves in reconstructing near-surface structures. This paper provides a state of the art review of MASW and shallow-seismic FWI and a comparison of both methods. A two-parameter numerical test is performed to analyze the nonlinearity of MASW and FWI, including the classical, the multiscale, the envelope-based, and the amplitude-spectrum-based FWI approaches. A checkerboard model is used to compare the resolution of MASW and FWI. These numerical examples show that classical FWI has the highest nonlinearity and resolution among these methods, while MASW has the lowest nonlinearity and resolution. The modified FWI approaches have an intermediate nonlinearity and resolution between classical FWI and MASW. These features suggest that a sequential application of MASW and FWI could provide an efficient hierarchical way to delineate near-surface structures. We apply the sequential-inversion strategy to two field data sets acquired in Olathe, Kansas, USA, and Rheinstetten, Germany, respectively. We build a 1D initial model by using MASW and then apply the multiscale FWI to the data. High-resolution 2D S-wave velocity images are obtained in both cases, whose reliabilities are proven by borehole data and a GPR profile, respectively. It demonstrates the effectiveness of combining MASW and FWI for high-resolution imaging of near-surface structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Aki K, Richards PG (2002) Quantitative seismology. University Science Books, Herndon

    Google Scholar 

  • Aleardi M, Tognarelli A, Mazzotti A (2016) Characterisation of shallow marine sediments using high-resolution velocity analysis and genetic-algorithm-driven 1D elastic full-waveform inversion. Near Surf Geophys 14(5):449–460

    Article  Google Scholar 

  • Amrouche M, Yamanaka H (2015) Two-dimensional shallow soil profiling using time-domain waveform inversion. Geophysics 80(1):EN27–EN41

    Article  Google Scholar 

  • Askari R, Hejazi SH (2015) Estimation of surface-wave group velocity using slant stack in the generalized S-transform domain surface-wave group velocity estimation. Geophysics 80(4):EN83–EN92

    Article  Google Scholar 

  • Behura J, Snieder R (2013) Virtual real source: source signature estimation using seismic interferometry. Geophysics 78(5):Q57–Q68

    Article  Google Scholar 

  • Bergamo P, Socco LV (2014) Detection of sharp lateral discontinuities through the analysis of surface-wave propagation. Geophysics 79(4):EN77–EN90

    Article  Google Scholar 

  • Bergamo P, Boiero D, Socco LV (2012) Retrieving 2D structures from surface-wave data by means of space-varying spatial windowing. Geophysics 77(4):EN39–EN51

    Article  Google Scholar 

  • Boaga J, Vignoli G, Cassiani G (2011) Shear wave profiles from surface wave inversion: the impact of uncertainty on seismic site response analysis. J Geophys Eng 8(2):162

    Article  Google Scholar 

  • Boaga J, Cassiani G, Strobbia CL, Vignoli G (2013) Mode misidentification in Rayleigh waves: ellipticity as a cause and a cure. Geophysics 78(4):EN17–EN28

    Article  Google Scholar 

  • Bohlen T (2002) Parallel 3-D viscoelastic finite difference seismic modelling. Comput Geosci 28(8):887–899

    Article  Google Scholar 

  • Bohlen T, Kugler S, Klein G, Theilen F (2004) 1.5D inversion of lateral variation of Scholte wave dispersion. Geophysics 69(2):330–344

    Article  Google Scholar 

  • Boiero D, Socco LV (2010) Retrieving lateral variations from surface wave dispersion curves. Geophys Prospect 58(6):977–996

    Google Scholar 

  • Boiero D, Bergamo P, Bruno Rege R, Socco LV (2011) Estimating surface-wave dispersion curves from 3D seismic acquisition schemes: part 11D models. Geophysics 76(6):G85–G93

    Article  Google Scholar 

  • Borisov D, Modrak R, Gao F, Tromp J (2017) 3D elastic full-waveform inversion of surface waves in the presence of irregular topography using an envelope-based misfit function. Geophysics 83(1):1–45

    Article  Google Scholar 

  • Bozdağ E, Trampert J, Tromp J (2011) Misfit functions for full waveform inversion based on instantaneous phase and envelope measurements. Geophys J Int 185(2):845–870

    Article  Google Scholar 

  • Bretaudeau F, Brossier R, Leparoux D, Abraham O, Virieux J (2013) 2D elastic full-waveform imaging of the near-surface: application to synthetic and physical modelling data sets. Near Surf Geophys 11(3):307–316

    Article  Google Scholar 

  • Brossier R, Operto S, Virieux J (2009) Seismic imaging of complex onshore structures by 2D elastic frequency-domain full-waveform inversion. Geophysics 74(6):WCC105–WCC118

    Article  Google Scholar 

  • Brossier R, Operto S, Virieux J (2010) Which data residual norm for robust elastic frequency-domain full waveform inversion? Geophysics 75(3):R37–R46

    Article  Google Scholar 

  • Bunks C, Saleck FM, Zaleski S, Chavent G (1995) Multiscale seismic waveform inversion. Geophysics 60(5):1457–1473

    Article  Google Scholar 

  • Cercato M (2009) Addressing non-uniqueness in linearized multichannel surface wave inversion. Geophys Prospect 57(1):27–47

    Article  Google Scholar 

  • Chai HY, Phoon KK, Goh SH, Wei CF (2012) Some theoretical and numerical observations on scattering of Rayleigh waves in media containing shallow rectangular cavities. J Appl Geophys 83:107–119

    Article  Google Scholar 

  • Chen X (1993) A systematic and efficient method of computing normal modes for multilayered half-space. Geophys J Int 115(2):391–409

    Article  Google Scholar 

  • Dal Moro G, Moura RMM, Moustafa SS (2015) Multi-component joint analysis of surface waves. J Appl Geophys 119:128–138

    Article  Google Scholar 

  • Dal Moro G, Moustafa SS, Al-Arifi NS (2018) Improved holistic analysis of Rayleigh waves for single-and multi-offset data: joint inversion of Rayleigh-wave particle motion and vertical-and radial-component velocity spectra. Pure Appl Geophys 175(1):67–88

    Article  Google Scholar 

  • De Nil D (2005) Characteristics of surface waves in media with significant vertical variations in elasto-dynamic properties. J Environ Eng Geophys 10(3):263–274

    Article  Google Scholar 

  • Di Fiore V, Cavuoto G, Tarallo D, Punzo M, Evangelista L (2016) Multichannel analysis of surface waves and down-hole tests in the archeological Palatine Hill area (Rome, Italy): evaluation and influence of 2D effects on the shear wave velocity. Surv Geophys 37(3):625–642

    Article  Google Scholar 

  • Dokter E, Köhn D, Wilken D, Nil D, Rabbel W (2017) Full-waveform inversion of SH- and Love-wave data in near-surface prospecting. Geophys Prospect 65:216–236

    Article  Google Scholar 

  • Dou S, Ajo-Franklin JB (2014) Full-wavefield inversion of surface waves for mapping embedded low-velocity zones in permafrost. Geophysics 79(6):EN107–EN124

    Article  Google Scholar 

  • Fichtner A, Kennett BL, Igel H, Bunge HP (2008) Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. Geophys J Int 175(2):665–685

    Article  Google Scholar 

  • Forbriger T (2003) Inversion of shallow-seismic wavefields: I. Wavefield transformation. Geophys J Int 153(3):719–734

    Article  Google Scholar 

  • Forbriger T, Groos L, Schäfer M (2014) Line-source simulation for shallow-seismic data. Part 1: theoretical background. Geophys J Int 198(3):1387–1404

    Article  Google Scholar 

  • Foti S, Comina C, Boiero D, Socco L (2009) Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses. Soil Dyn Earthq Eng 29(6):982–993

    Article  Google Scholar 

  • Foti S, Parolai S, Albarello D, Picozzi M (2011) Application of surface-wave methods for seismic site characterization. Surv Geophys 32(6):777–825

    Article  Google Scholar 

  • Foti S, Lai CG, Rix GJ, Strobbia C (2014) Surface wave methods for near-surface site characterization. CRC Press, Boca Raton

    Book  Google Scholar 

  • Gao L, Pan Y (2016) Acquisition and processing pitfall with clipped traces in surface-wave analysis. J Appl Geophys 125:1–6

    Article  Google Scholar 

  • Gao L, Pan Y (2018) Source signature estimation from multimode surface waves via mode-separated virtual real source method. Geophys J Int 213(2):1177–1186

    Article  Google Scholar 

  • Gao L, Xia J, Pan Y (2014) Misidentification caused by leaky surface wave in high-frequency surface wave method. Geophys J Int 199(3):1452–1462

    Article  Google Scholar 

  • Gao L, Xia J, Pan Y, Xu Y (2016) Reason and condition for mode kissing in MASW method. Pure Appl Geophys 173(5):1627–1638

    Article  Google Scholar 

  • Garofalo F, Foti S, Hollender F, Bard P, Cornou C, Cox BR, Ohrnberger M, Sicilia D, Asten M, Di Giulio G et al (2016) Interpacific project: comparison of invasive and non-invasive methods for seismic site characterization. Part I: intra-comparison of surface wave methods. Soil Dyn Earthq Eng 82:222–240

    Article  Google Scholar 

  • Gélis C, Virieux J, Grandjean G (2007) Two-dimensional elastic full waveform inversion using Born and Rytov formulations in the frequency domain. Geophys J Int 168(2):605–633

    Article  Google Scholar 

  • Gilbert JC, Nocedal J (1992) Global convergence properties of conjugate gradient methods for optimization. SIAM J Optim 2(1):21–42

    Article  Google Scholar 

  • Groos L, Schäfer M, Forbriger T, Bohlen T (2014) The role of attenuation in 2D full-waveform inversion of shallow-seismic body and Rayleigh waves. Geophysics 79(6):R247–R261

    Article  Google Scholar 

  • Groos L, Schäfer M, Forbriger T, Bohlen T (2017) Application of a complete workflow for 2D elastic full-waveform inversion to recorded shallow-seismic Rayleigh waves. Geophysics 82(2):R109–R117

    Article  Google Scholar 

  • Haskell NA (1953) The dispersion of surface waves on multilayered media. Bull Seismol Soc Am 43(1):17–34

    Google Scholar 

  • Hayashi K, Suzuki H (2004) CMP cross-correlation analysis of multi-channel surface-wave data. Explor Geophys 35:7–13

    Article  Google Scholar 

  • Hestenes MR, Stiefel E (1952) Methods of conjugate gradients for solving linear systems. J Res Natl Bur Stand 49(6):409–436

    Article  Google Scholar 

  • Ikeda T, Tsuji T (2015) Advanced surface-wave analysis for 3D ocean bottom cable data to detect localized heterogeneity in shallow geological formation of a CO2 storage site. Int J Greenh Gas Control 39:107–118

    Article  Google Scholar 

  • Ikeda T, Tsuji T, Matsuoka T (2013) Window-controlled CMP crosscorrelation analysis for surface waves in laterally heterogeneous media. Geophysics 78(6):EN95–EN105

    Article  Google Scholar 

  • Ikeda T, Matsuoka T, Tsuji T, Nakayama T (2014) Characteristics of the horizontal component of Rayleigh waves in multimode analysis of surface waves. Geophysics 80(1):EN1–EN11

    Article  Google Scholar 

  • Ivanov J, Miller RD, Xia J, Steeples D, Park CB (2006) Joint analysis of refractions with surface waves: an inverse solution to the refraction-traveltime problem. Geophysics 71(6):R131–R138

    Article  Google Scholar 

  • Kallivokas L, Fathi A, Kucukcoban S, Stokoe K II, Bielak J, Ghattas O (2013) Site characterization using full waveform inversion. Soil Dyn Earthq Eng 47:62–82

    Article  Google Scholar 

  • Ke G, Dong H, Kristensen Å, Thompson M (2011) Modified Thomson–Haskell matrix methods for surface-wave dispersion-curve calculation and their accelerated root-searching schemes. Bull Seismol Soc Am 101(4):1692–1703

    Article  Google Scholar 

  • Kennett B (1974) Reflections, rays, and reverberations. Bull Seismol Soc Am 64(6):1685–1696

    Google Scholar 

  • Knopoff L (1964) A matrix method for elastic wave problems. Bull Seismol Soc Am 54(1):431–438

    Google Scholar 

  • Köhn D, Meier T, Fehr M, Nil D, Auras M (2016) Application of 2D elastic Rayleigh waveform inversion to ultrasonic laboratory and field data. Near Surf Geophys 14(5):461–476

    Article  Google Scholar 

  • Kumar J, Naskar T (2017) Resolving phase wrapping by using sliding transform for generation of dispersion curves. Geophysics 82(3):V127–V136

    Article  Google Scholar 

  • Lin CP, Chang TS (2004) Multi-station analysis of surface wave dispersion. Soil Dyn Earthq Eng 24(11):877–886

    Article  Google Scholar 

  • Lin CP, Lin CH, Chien CJ (2017) Dispersion analysis of surface wave testing: SASW versus MASW. J Appl Geophys 143:223–230

    Article  Google Scholar 

  • Liu Y, Teng J, Xu T, Badal J, Liu Q, Zhou B (2017) Effects of conjugate gradient methods and step-length formulas on the multiscale full waveform inversion in time domain: numerical experiments. Pure Appl Geophys 174(5):1983–2006

    Article  Google Scholar 

  • Lu L, Wang C, Zhang B (2007) Inversion of multimode Rayleigh waves in the presence of a low-velocity layer: numerical and laboratory study. Geophys J Int 168(3):1235–1246

    Article  Google Scholar 

  • Luo Y, Xia J, Miller R, Xu Y, Liu J, Liu Q (2008) Rayleigh-wave dispersive energy imaging using a high-resolution linear Radon transform. Pure Appl Geophys 165(5):903–922

    Article  Google Scholar 

  • Luo Y, Xia J, Liu J, Xu Y, Liu Q (2009) Research on the middle-of-receiver-spread assumption of the MASW method. Soil Dyn Earthq Eng 29(1):71–79

    Article  Google Scholar 

  • Maraschini M, Foti S (2010) A monte carlo multimodal inversion of surface waves. Geophys J Int 182(3):1557–1566

    Article  Google Scholar 

  • Masoni I, Brossier R, Virieux J, Boelle J (2013a) Alternative misfit functions for FWI applied to surface waves. In: 75th EAGE conference and exhibition incorporating SPE EUROPEC 2013

  • Masoni I, Valensi R, Brossier R, Virieux J, Boelle J, Leparoux D, Cote P (2013b) Toward a better full waveform inversion of surface waves. In: 19th European meeting of environmental and engineering geophysics, EAGE, expanded abstracts, vol 19200

  • Maurer H, Curtis A, Boerner DE (2010) Recent advances in optimized geophysical survey design. Geophysics 75(5):75A177–75A194

    Article  Google Scholar 

  • Menke W (2017) The uniqueness of single data function, multiple model functions, inverse problems including the Rayleigh wave dispersion problem. Pure Appl Geophys 174(4):1699–1710

    Article  Google Scholar 

  • Métivier L, Brossier R (2016) The SEISCOPE optimization toolbox: a large-scale nonlinear optimization library based on reverse communicationthe seiscope optimization toolbox. Geophysics 81(2):F1–F15

    Article  Google Scholar 

  • Métivier L, Brossier R, Virieux J, Operto S (2013) Full waveform inversion and the truncated Newton method. SIAM J Sci Comput 35(2):B401–B437

    Article  Google Scholar 

  • Mi B, Xia J, Shen C, Wang L, Hu Y, Cheng F (2017) Horizontal resolution of multichannel analysis of surface waves. Geophysics 82(3):EN51–EN66

    Article  Google Scholar 

  • Mi B, Xia J, Shen C, Wang L (2018) Dispersion energy analysis of Rayleigh and Love waves in the presence of low-velocity layers in near-surface seismic surveys. Surv Geophys 39(2):271–288

    Article  Google Scholar 

  • Miller R, Xia J, Park C, Ivanov J (1999) Multichannel analysis of surface waves to map bedrock. Lead Edge 18(12):1392–1396

    Article  Google Scholar 

  • Mun S, Bao Y, Li H (2015) Generation of Rayleigh-wave dispersion images from multichannel seismic data using sparse signal reconstruction. Geophys J Int 203(2):818–827

    Article  Google Scholar 

  • Nazarian S, Stokoe I, Kenneth H, Hudson W (1983) Use of spectral analysis of surface waves method for determination of moduli and thicknesses of pavement systems. Transp Res Rec 930:38–45

    Google Scholar 

  • Nguyen TD, Tran KT, McVay M (2016) Evaluation of unknown foundations using surface-based full waveform tomography. J Bridge Eng 21(5):04016013

    Article  Google Scholar 

  • Nocedal J, Wright S (2006) Numerical optimization. Springer, Berlin

    Google Scholar 

  • Nuber A, Manukyan E, Maurer H (2017) Optimizing measurement geometry for seismic near-surface full waveform inversion. Geophys J Int 210(3):1909–1921

    Article  Google Scholar 

  • Pan Y, Xia J, Gao L, Shen C, Zeng C (2013a) Calculation of Rayleigh-wave phase velocities due to models with a high-velocity surface layer. J Appl Geophys 96:1–6

    Article  Google Scholar 

  • Pan Y, Xia J, Zeng C (2013b) Verification of correctness of using real part of complex root as Rayleigh-wave phase velocity with synthetic data. J Appl Geophys 88:94–100

    Article  Google Scholar 

  • Pan Y, Xia J, Xu Y, Gao L (2016a) Multichannel analysis of Love waves in a 3D seismic acquisition system. Geophysics 81(5):EN67–EN74

    Article  Google Scholar 

  • Pan Y, Xia J, Xu Y, Gao L, Xu Z (2016b) Love-wave waveform inversion for shallow shear-wave velocity using a conjugate gradient algorithm. Geophysics 81(1):R1–R14

    Article  Google Scholar 

  • Pan Y, Gao L, Bohlen T (2017) Sequential phase-velocity and waveform inversion of shallow-seismic surface waves—a field example for bedrock mapping. In: 23rd European meeting of environmental and engineering geophysics

  • Pan Y, Gao L, Bohlen T (2018a) Time-domain full-waveform inversion of Rayleigh and Love waves in presence of free-surface topography. J Appl Geophys 152:77–85

    Article  Google Scholar 

  • Pan Y, Schaneng S, Steinweg T, Bohlen T (2018b) Estimating S-wave velocities from 3D 9-component shallow seismic data using local Rayleigh-wave dispersion curves—a field study. J Appl Geophys 159:532–539

    Article  Google Scholar 

  • Park CB, Miller RD, Xia J, et al (1998) Imaging dispersion curves of surface waves on multi-channel record. In: 1998 SEG annual meeting, society of exploration geophysicists

  • Park CB, Miller RD, Xia J (1999) Multichannel analysis of surface waves. Geophysics 64(3):800–808

    Article  Google Scholar 

  • Parolai S (2009) Determination of dispersive phase velocities by complex seismic trace analysis of surface waves (CASW). Soil Dyn Earthq Eng 29(3):517–524

    Article  Google Scholar 

  • Pei D, Louie JN, Pullammanappallil SK (2008) Improvements on computation of phase velocities of Rayleigh waves based on the generalized R/T coefficient method. Bull Seismol Soc Am 98(1):280–287

    Article  Google Scholar 

  • Pérez Solano C, Donno D, Chauris H (2014) Alternative waveform inversion for surface wave analysis in 2-D media. Geophys J Int 198(3):1359–1372

    Article  Google Scholar 

  • Piatti C, Socco L, Boiero D, Foti S (2013) Constrained 1D joint inversion of seismic surface waves and P-refraction traveltimes. Geophys Prospect 61(1):77–93

    Article  Google Scholar 

  • Plessix R (2006) A review of the adjoint-state method for computing the gradient of a functional with geophysical applications. Geophys J Int 167(2):495–503

    Article  Google Scholar 

  • Plessix R, Mulder W (2004) Frequency-domain finite-difference amplitude-preserving migration. Geophys J Int 157(1):957–987

    Google Scholar 

  • Renalier F, Jongmans D, Savvaidis A, Wathelet M, Endrun B, Cornou C (2010) Influence of parameterization on inversion of surface wave dispersion curves and definition of an inversion strategy for sites with a strong versus contrast. Geophysics 75(6):B197–B209

    Article  Google Scholar 

  • Romdhane A, Grandjean G, Brossier R, Rejiba F, Operto S, Virieux J (2011) Shallow-structure characterization by 2D elastic full waveform inversion. Geophysics 76(3):R81–R93

    Article  Google Scholar 

  • Ryden N, Park CB (2006) Fast simulated annealing inversion of surface waves on pavement using phase-velocity spectra. Geophysics 71(4):R49–R58

    Article  Google Scholar 

  • Schwab F, Knopoff L (1970) Surface-wave dispersion computations. Bull Seismol Soc Am 61:321–344

    Google Scholar 

  • Shen C, Wang A, Wang L, Xu Z, Cheng F (2015) Resolution equivalence of dispersion-imaging methods for noise-free high-frequency surface-wave data. J Appl Geophys 122:167–171

    Article  Google Scholar 

  • Sloan SD, Peterie SL, Miller RD, Ivanov J, Schwenk JT, McKenna JR (2015) Detecting clandestine tunnels using near-surface seismic techniques. Geophysics 80(5):EN127–EN135

    Article  Google Scholar 

  • Socco L, Boiero D (2008) Improved monte carlo inversion of surface wave data. Geophys Prospect 56(3):357–371

    Article  Google Scholar 

  • Socco L, Boiero D, Foti S, Wisn R (2009) Laterally constrained inversion of ground roll from seismic reflection records. Geophysics 74(6):G35–G45

    Article  Google Scholar 

  • Socco L, Foti S, Boiero D (2010) Surface wave analysis for building near surface velocity models: established approaches and new perspectives. Geophysics 75(5):A83–A102

    Article  Google Scholar 

  • Song X, Tang L, Lv X, Fang H, Gu H (2012) Application of particle swarm optimization to interpret Rayleigh wave dispersion curves. J Appl Geophys 84:1–13

    Article  Google Scholar 

  • Strobbia C, Foti S (2006) Multi-offset phase analysis of surface wave data (MOPA). J Appl Geophys 59(4):300–313

    Article  Google Scholar 

  • Strobbia C, Laake A, Vermeer P, Glushchenko A (2011) Surface waves: use them then lose them. surface-wave analysis, inversion and attenuation in land reflection seismic surveying. Near Surf Geophys 9(6):503–514

    Article  Google Scholar 

  • Tarantola A (1986) A strategy for nonlinear elastic inversion of seismic reflection data. Geophysics 51(10):1893–1903

    Article  Google Scholar 

  • Tarantola A (1988) Theoretical background for the inversion of seismic waveforms including elasticity and attenuation. Pure Appl Geophys 128(1–2):365–399

    Article  Google Scholar 

  • Tarantola A (2005) Inverse problem theory and methods for model parameter estimation, vol 89. SIAM, Bangkok

    Book  Google Scholar 

  • Thomson WT (1950) Transmission of elastic waves through a stratified solid medium. J Appl Phys 21(2):89–93

    Article  Google Scholar 

  • Tran K, McVay M, Faraone M, Horhota D (2013) Sinkhole detection using 2D full seismic waveform tomography. Geophysics 78(5):R175–R183

    Article  Google Scholar 

  • Tran KT, Sperry J (2018) Application of 2-D full waveform tomography on land-streamer data for assessment of roadway subsidence. Geophysics 83(3):1–42

    Article  Google Scholar 

  • Tsuji T, Johansen TA, Ruud BO, Ikeda T, Matsuoka T (2012) Surface-wave analysis for identifying unfrozen zones in subglacial sediments S-wave velocity in subglacial sediment. Geophysics 77(3):EN17–EN27

    Article  Google Scholar 

  • Verachtert R, Lombaert G, Degrande G (2017) Multimodal determination of Rayleigh dispersion and attenuation curves using the circle fit method. Geophys J Int 212(3):2143–2158

    Article  Google Scholar 

  • Vignoli G, Cassiani G (2010) Identification of lateral discontinuities via multi-offset phase analysis of surface wave data. Geophys Prospect 58(3):389–413

    Article  Google Scholar 

  • Vignoli G, Strobbia C, Cassiani G, Vermeer P (2011) Statistical multioffset phase analysis for surface-wave processing in laterally varying media. Geophysics 76(2):U1–U11

    Article  Google Scholar 

  • Virieux J (1986) P-SV wave propagation in heterogeneous media: velocity-stress finite-difference method. Geophysics 51(4):889–901

    Article  Google Scholar 

  • Virieux J, Operto S (2009) An overview of full-waveform inversion in exploration geophysics. Geophysics 74(6):WCC1–WCC26

    Article  Google Scholar 

  • Wang L, Xu Y, Xia J, Luo Y (2015) Effect of near-surface topography on high-frequency Rayleigh-wave propagation. J Appl Geophys 116:93–103

    Article  Google Scholar 

  • Watson T (1970) A note on fast computation of Rayleigh wave dispersion in the multilayered elastic half-space. Bull Seismol Soc Am 60(1):161–166

    Google Scholar 

  • Wu RS, Luo J, Wu B (2014) Seismic envelope inversion and modulation signal model. Geophysics 79(3):WA13–WA24

    Article  Google Scholar 

  • Xia J (2014) Estimation of near-surface shear-wave velocities and quality factors using multichannel analysis of surface-wave methods. J Appl Geophys 103:140–151

    Article  Google Scholar 

  • Xia J, Miller R, Park C (1999) Estimation of near-surface shear-wave velocity by inversion of Rayleigh wave. Geophysics 64(4):691–700

    Article  Google Scholar 

  • Xia J, Miller RD, Park CB, Tian G (2003) Inversion of high frequency surface waves with fundamental and higher modes. J Appl Geophys 52(1):45–57

    Article  Google Scholar 

  • Xia J, Xu Y, Miller RD (2007) Generating an image of dispersive energy by frequency decomposition and slant stacking. Pure Appl Geophys 164(5):941–956

    Article  Google Scholar 

  • Xia J, Xu Y, Miller RD, Zeng C (2010) A trade-off solution between model resolution and covariance in surface-wave inversion. Pure Appl Geophys 167(12):1537–1547

    Article  Google Scholar 

  • Xia J, Xu Y, Luo Y, Miller R, Cakir C, Zeng C (2012) Advantages of using multichannel analysis of Love waves (MALW) to estimate near-surface shear-wave velocity. Surv Geophys 33:841–860

    Article  Google Scholar 

  • Xing Z, Mazzotti A (2018) Two-grid genetic algorithm full waveform inversion of surface waves: two actual data examples. In: 80th EAGE conference and exhibition 2018

  • Yamanaka H, Ishida H (1996) Application of genetic algorithms to an inversion of surface-wave dispersion data. Bull Seismol Soc Am 86(2):436–444

    Google Scholar 

  • Yuan YO, Simons FJ, Bozdağ E (2015) Multiscale adjoint waveform tomography for surface and body waves. Geophysics 80(5):R281–R302

    Article  Google Scholar 

  • Zeng C, Xia J, Miller R, Tsoflias GP (2011a) Feasibility of waveform inversion of Rayleigh waves for shallow shear-wave velocity using a genetic algorithm. J Appl Geophys 75:655–684

    Article  Google Scholar 

  • Zeng C, Xia J, Miller RD, Tsoflias GP (2011b) Application of the multiaxial perfectly matched layer (M-PML) to near-surface seismic modeling with Rayleigh waves. Geophysics 76(3):T43–T52

    Article  Google Scholar 

  • Zeng C, Xia J, Miller RD, Tsoflias GP, Wang Z (2012) Numerical investigation of MASW applications in presence of surface topography. J Appl Geophys 84:52–60

    Article  Google Scholar 

  • Zhang SX, Chan LS (2003) Possible effects of misidentified mode number on Rayleigh wave inversion. J Appl Geophys 53(1):17–29

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Thomas Hertweck for an internal review and Prof. Jianghai Xia for providing the first field data set. The authors also appropriate the editor Prof. Michael J. Rycroft and two anonymous reviewers for their helpful and constructive comments. We gratefully acknowledge financial support by the Deutsche Forschungsgemeinschaft (DFG) through CRC 1173.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yudi Pan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Gao, L. & Bohlen, T. High-Resolution Characterization of Near-Surface Structures by Surface-Wave Inversions: From Dispersion Curve to Full Waveform. Surv Geophys 40, 167–195 (2019). https://doi.org/10.1007/s10712-019-09508-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-019-09508-0

Keywords

Navigation