Skip to main content

Advertisement

Log in

Satellite Altimetry Measurements of Sea Level in the Coastal Zone

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

Satellite radar altimetry provides a unique sea level data set that extends over more than 25 years back in time and that has an almost global coverage. However, when approaching the coasts, the extraction of correct sea level estimates is challenging due to corrupted waveforms and to errors in most of the corrections and in some auxiliary information used in the data processing. The development of methods dedicated to the improvement of altimeter data in the coastal zone dates back to the 1990s, but the major progress happened during the last decade thanks to progress in radar technology [e.g., synthetic aperture radar (SAR) mode and Ka-band frequency], improved waveform retracking algorithms, the availability of new/improved corrections (e.g., wet troposphere and tidal models) and processing workflows oriented to the coastal zone. Today, a set of techniques exists for the processing of coastal altimetry data, generally called “coastal altimetry.” They have been used to generate coastal altimetry products. Altimetry is now recognized as part of the integrated observing system devoted to coastal sea level monitoring. In this article, we review the recent technical advances in processing and the new technological capabilities of satellite radar altimetry in the coastal zone. We also illustrate the fast-growing use of coastal altimetry data sets in coastal sea level research and applications, as high-frequency (tides and storm surge) and long-term sea level change studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Data from Woodworth et al. (2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Adapted from Ampou et al. (2017)

Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Adapted from Chao et al. (2017)

Similar content being viewed by others

References

  • Abileah R, Gómez-Enri J, Scozzari A, Vignudelli S (2013) Coherent ranging with Envisat radar altimeter: a new perspective in analyzing altimeter data using Doppler processing. Remote Sens Environ 139:271–276. https://doi.org/10.1016/j.rse.2013.08.005

    Article  Google Scholar 

  • Abileah R, Scozzari A, Vignudelli S (2017) Envisat RA-2 individual echoes: a unique dataset for a better understanding of inland water altimetry potentialities. Remote Sens 9(6):605. https://doi.org/10.3390/rs9060605

    Article  Google Scholar 

  • Ablain M, Legeais JF, Prandi P, Marcos M, Fenoglio-Marc L, Dieng HB, Benveniste A, Cazenave A (2017) Satellite altimetry-based sea level at global and regional scales. In: Cazenave A, Champollion N, Paul F, Benveniste J (eds) Integrative study of the mean sea level and its components, vol 58. Space sciences series of ISSI. Springer, Cham, pp 9–33. https://doi.org/10.1007/978-3-319-56490-6_2

    Chapter  Google Scholar 

  • Abulaitijiang A, Andersen OB, Stenseng L (2015) Coastal sea level from inland CryoSat-2 interferometric SAR altimetry. Geophys Res Lett 42(6):1841–1847. https://doi.org/10.1002/2015GL063131

    Article  Google Scholar 

  • Ampou EE, Johan O, Menkes CE, Niño F, Birol F, Ouillon S, Andréfouët S (2017) Coral mortality induced by the 2015–2016 El-Niño in Indonesia: the effect of rapid sea level fall. Biogeosciences 14(4):817–826. https://doi.org/10.5194/bg-14-817-2017

    Article  Google Scholar 

  • Andersen OB, Scharroo R (2011) Range and geophysical corrections in coastal regions: and implications for mean sea surface determination. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 103–146. https://doi.org/10.1007/978-3-642-12796-0_5

    Chapter  Google Scholar 

  • Antony C, Testut L, Unnikrishnan AS (2014) Observing storm surges in the Bay of Bengal from satellite altimetry. Estuar Coast Shelf Sci 151:131–140. https://doi.org/10.1016/j.ecss.2014.09.012

    Article  Google Scholar 

  • Ardhuin F, Brandt P, Gaultier L, Donlon C, Battaglia A, Boy F, Casal T, Chapron B, Collard F, Cravatte S, Delouis JM (2019) SKIM, a candidate satellite mission exploring global ocean currents and waves. Front Mar Sci 6(209):1–8. https://doi.org/10.3389/fmars.2019.00209

    Article  Google Scholar 

  • Bajo M, De Biasio F, Umgiesser G, Vignudelli S, Zecchetto S (2017) Impact of using scatterometer and altimeter data on storm surge forecasting. Ocean Model 113:85–94. https://doi.org/10.1016/j.ocemod.2017.03.014)

    Article  Google Scholar 

  • Benveniste J, Cazenave A, Vignudelli S, Fenoglio-Marc L, Shah R, Almar R, Andersen O, Birol F, Bonnefond P, Bouffard J, Calafat F, Cardellach E, Cipollini P, Dufau C, Fernandes J, Garrison J, Frappart F, Gommenginger C, Han G, Høyer JL, Kourafalou V, Le Cozannet G, Leuliette E, Li Z, Loisel H, Madsen KS, Marcos M, Melet A, Meyssignac B, Passaro M, Pasqual A, Passaro M, Ribo S, Scharroo R, Song T, Speich S, Wilkin J, Woodworth P, Wöppelmann G (2019) Requirements for a coastal hazard observing system, OceanObs’19 community white paper. Front Mar Sci J Spec Sect Coast Ocean Process 6:348. https://doi.org/10.3389/fmars.2019.00348

    Article  Google Scholar 

  • Berry PAM, Freeman JA, Smith RG (2010) An enhanced ocean and coastal zone retracking technique for gravity field computation. In: Mertikas SP (ed) Gravity, geoid and Earth observation International Association of Geodesy Symposia, vol 135. Springer, Berlin, pp 213–220. https://doi.org/10.1007/978-3-642-10634-7_28

  • Birgiel E, Ellmann A, Delpeche-Ellmann N (2018) Examining the performance of the Sentinel-3 coastal altimetry in the Baltic Sea using a regional high-resolution geoid model. In: Proceedings of 2018 Baltic geodetic congress (BGC Geomatics), Olsztyn, Poland, 21–23 June 2018. https://doi.org/10.1109/bgc-geomatics.2018.00043

  • Birol F, Roblou L, Lyard F, Llovel W, Durand F, Renault L, Dewitte R, Morrow R, Ménard Y (2006) Towards using satellite altimetry for the observation of coastal dynamics. In: Danesy D (ed) Proceedings of 15 years of progress in radar altimetry joint ESA-CNES symposium, Venice, Italy, 13–18 March 2006, ESA SP-614. ISBN: 92-9092-925-1

  • Birol F, Fuller N, Lyard F, Cancet M, Nino F, Delebecque C, Fleury S, Toublanc F, Melet A, Saraceno M, Léger F (2017) Coastal applications from nadir altimetry: example of the X-TRACK regional products. Adv Space Res 59(4):936–953. https://doi.org/10.1016/j.asr.2016.11.005

    Article  Google Scholar 

  • Bonnefond P, Verron J, Aublanc J, Babu KN, Bergé-Nguyen M, Cancet M, Chaudhary A, Crétaux JF, Frappart F, Haines BJ, Laurain O, Ollivier A, Poisson JC, Prandi P, Sharma R, Thibaut P, Watson C (2018) The benefits of the Ka-band as evidenced from the SARAL/Altika altimetric mission: quality assessment and unique characteristics of Altika data. Remote Sens 10(1):83. https://doi.org/10.3390/rs10010083

    Article  Google Scholar 

  • Boy F, Desjonquères J-D, Picot N, Moreau T, Raynal M (2017) CryoSat-2 SAR-mode over oceans: processing methods, global assessment, and benefits. IEEE Trans Geosci Remote Sens 55(1):148–158. https://doi.org/10.1109/TGRS.2016.2601958

    Article  Google Scholar 

  • Brown G (1977) The average impulse response of a rough surface and its applications. IEEE Trans Antennas Propag 25(1):67–74. https://doi.org/10.1109/TAP.1977.1141536

    Article  Google Scholar 

  • Brown S (2010) A novel near-land radiometer wet path-delay retrieval algorithm: application to the Jason-2/OSTM advanced microwave radiometer. IEEE Trans Geosci Remote Sens 48(4):1986–1992. https://doi.org/10.1109/TGRS.2009.2037220

    Article  Google Scholar 

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing-comparisons with observations. Geophys Res Lett. https://doi.org/10.1029/2002gl016473

    Article  Google Scholar 

  • Carrere L, Faugère Y, Ablain M (2016) Major improvement of altimetry sea level estimations using pressure-derived corrections based on ERA-Interim atmospheric reanalysis. Ocean Sci 12:825–842. https://doi.org/10.5194/os-12-825-2016

    Article  Google Scholar 

  • Cazenave A, Palanisamy H, Ablain M (2018) Contemporary sea level changes from satellite altimetry: what have we learned? What are the new challenges? Adv Space Res 62(7):1639–1653. https://doi.org/10.1016/j.asr.2018.07.017

    Article  Google Scholar 

  • Chao Y, Farrara JD, Zhang H, Zhang YJ, Atelijevich E, Chai F, Davis CO, Dugdale R, Wilkerson F (2017) Development, implementation, and validation of a modeling system for the San Francisco Bay and Estuary. Estuar Coast Shelf Sci 194:40–56. https://doi.org/10.1016/j.ecss.2017.06.005

    Article  Google Scholar 

  • Cipollini P, Vignudelli S, Benveniste J (2014) The coastal zone: a mission target for satellite altimeters. EOS Trans AGU 95(8):72. https://doi.org/10.1002/2014EO080006

    Article  Google Scholar 

  • Cipollini P, Calafat FM, Jevrejeva S, Melet A, Prandi P (2017a) Monitoring sea level in the coastal zone with satellite altimetry and tide gauges. Surv Geophys 38:33–57. https://doi.org/10.1007/s10712-016-9392-0

    Article  Google Scholar 

  • Cipollini P, Benveniste J, Birol F, Fernandes MJ, Obligis E, Passaro M, Strub PT, Valladeau G, Vignudelli S, Wilkin J (2017b) Satellite altimetry in coastal regions. In: Stammer D, Cazenave A (eds) Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, FL, pp 343–380

    Chapter  Google Scholar 

  • Clerc S, O’ Mahony C, Mangin A, Datcu M, Vignudelli S, Illuzzi D, Craciunescu V, Leone R, Campbell G (2016) New perspectives for the observation of coastal zones with the Coastal Thematic Exploitation Platform. In: Proceedings of European Space Agency living planet symposium, 9–13 May 2016, Prague, Czech Republic, ESA SP 740, August 2016

  • Cotton PD, Garcia PN, Cancet M, Andersen O, Stenseng L, Martin F, Cipollini P, Calafat FM, Passaro M, Ambrózio A, Benveniste J (2016) Improved oceanographic measurements with cryosat sar altimetry: application to the coastal zone and arctic. In: Proceedings of European Space Agency living planet symposium, 9–13 May 2016, Prague, Czech Republic, ESA SP 740, August 2016

  • Deng X, Featherstone WE (2006) A coastal retracking system for satellite radar altimeter waveforms: application to ERS-2 around Australia. J Geophys Res Oceans. https://doi.org/10.1029/2005jc003039

    Article  Google Scholar 

  • Desai S (2018) Surface water and ocean topography mission (SWOT) project. Science requirements doc., revision B. California Institute of Technology Jet Propulsion Laboratory Publ. JPL D-61923

  • Desjonquères J, Carayon G, Steunou N, Lambin J (2010) Poseidon-3 radar altimeter: new modes and in-flight performances. Mar Geod 33(Suppl.):57–79. https://doi.org/10.1080/01490419.2010.488970

    Article  Google Scholar 

  • Desportes C, Obligis E, Eymard L (2007) On the wet tropospheric correction for altimetry in coastal regions. IEEE Trans Geosci Remote Sens 45(7):2139–2149. https://doi.org/10.1109/TGRS.2006.888967

    Article  Google Scholar 

  • Dinardo S, Fenoglio-Marc L, Buchhaupt C, Becker M, Scharroo R, Fernandes MJ, Benveniste J (2018) Coastal SAR and PLRM altimetry in German Bight and West Baltic Sea. Adv Space Res 62(6):1371–1404. https://doi.org/10.1016/j.asr.2017.12.018

    Article  Google Scholar 

  • Dong C, Xu G, Han G, Chen N, He Y, Chen D (2018) Identification of tidal mixing fronts from high-resolution along-track altimetry data. Remote Sens Environ 209:489–496. https://doi.org/10.1016/j.rse.2018.02.047

    Article  Google Scholar 

  • Durand F, Piecuch CG, Becker M, Papa F, Raju SV, Khan JU, Ponte RM (2019) Impact of continental freshwater runoff on coastal sea level. Surv Geophys. https://doi.org/10.1007/s10712-019-09536-w

    Article  Google Scholar 

  • Egido A, Smith WH (2017) Fully focused SAR altimetry: theory and applications. IEEE Trans Geosci Remote Sens 55(1):392–406. https://doi.org/10.1109/TGRS.2016.2607122

    Article  Google Scholar 

  • Emery KO, Aubrey DG (eds) (1991) Sea levels, land levels, and tide gauges. Springer, Berlin. https://doi.org/10.1007/978-1-4613-9101-2

    Book  Google Scholar 

  • Fenoglio-Marc L, Dinardo S, Scharroo R, Roland A, Sikiric MD, Lucas B, Becker M, Benveniste J, Weiss R (2015) The German bight: a validation of CryoSat-2 altimeter data in SAR mode. Adv Space Res 55(11):2641–2656. https://doi.org/10.1016/j.asr.2015.02.014

    Article  Google Scholar 

  • Fenoglio-Marc L, Dinardo S, Buchhaupt C, Scharroo R, Becker M, Benveniste J (2019) Calibrating the SAR sea surface heights of CryoSat-2 and Sentinel-3 along the German coasts. In: Proceedings of international association of geodesy symposia. Springer, Berlin. https://doi.org/10.1007/1345_2019_73

  • Fernandes MJ, Lázaro C (2016) GPD+ wet tropospheric corrections for CryoSat-2 and GFO altimetry missions. Remote Sens 8(10):851. https://doi.org/10.3390/rs8100851

    Article  Google Scholar 

  • Fernandes MJ, Pires N, Lázaro C, Nunes AL (2013) Tropospheric delays from GNSS for application in coastal altimetry. Adv Space Res 51(8):1352–1368. https://doi.org/10.1016/j.asr.2012.04.025

    Article  Google Scholar 

  • Fernandes MJ, Lázaro C, Nunes AL, Scharroo R (2014) Atmospheric corrections for altimetry studies over inland water. Remote Sens 6(6):4952–4997. https://doi.org/10.3390/rs6064952

    Article  Google Scholar 

  • Fernandes MJ, Lázaro C, Ablain M, Pires N (2015) Improved wet path delays for all ESA and reference altimetric missions. Remote Sens Environ 169:50–74. https://doi.org/10.1016/j.rse.2015.07.023

    Article  Google Scholar 

  • Fu LL, Cazenave A (eds) (2001) Satellite altimetry and earth sciences: a handbook of techniques and applications. Academic Press, London

    Google Scholar 

  • Fu L-L, Ubelmann C (2014) On the transition from profile altimeter to swath altimeter for observing global ocean surface topography. J Ocean Atmos Technol 31(2):560–568. https://doi.org/10.1175/JTECH-D-13-00109.1

    Article  Google Scholar 

  • García P, Martin-Puig C, Roca M (2018) SARin mode, and a window delay approach, for coastal altimetry. Adv Space Res 62(6):1358–1370. https://doi.org/10.1016/j.asr.2018.03.015

    Article  Google Scholar 

  • Gharineiat Z, Deng X (2018) Description and assessment of regional sea-level trends and variability from altimetry and tide gauges at the northern Australian coast. Adv Space Res 61(10):2540–2554. https://doi.org/10.1016/j.asr.2018.02.038

    Article  Google Scholar 

  • Gómez-Enri J, Vignudelli S, Quartly G, Gommenginger C, Benveniste J (2009) Bringing satellite radar altimetry closer to shore. In: SPIE (Society of Photo-Optical Instrumentation Engineers) Newsroom, pp 1–3. https://doi.org/10.1117/2.1200908.1797

  • Gómez-Enri J, Vignudelli S, Quartly GD, Gommenginger CP, Cipollini P, Challenor PG, Benveniste J (2010) Modeling ENVISAT RA-2 waveforms in the coastal zone: case study of calm water contamination. IEEE Geosci Remote Sens Lett 7(3):474–478. https://doi.org/10.1109/LGRS.2009.2039193

    Article  Google Scholar 

  • Gómez-Enri J, Cipollini P, Passaro M, Vignudelli S, Tejedor B, Coca J (2016) Coastal altimetry products in the strait of Gibraltar. IEEE Trans Geosci Remote Sens 54(9):5455–5466. https://doi.org/10.1109/tgrs.2016.2565472

    Article  Google Scholar 

  • Gómez-Enri J, Vignudelli S, Cipollini P, Coca J, González CJ (2018) Validation of CryoSat-2 SIRAL sea level data in the eastern continental shelf of the Gulf of Cadiz (Spain). Adv Space Res 62(6):1405–1420. https://doi.org/10.1016/j.asr.2017.10.042

    Article  Google Scholar 

  • Gómez-Enri J, González CJ, Passaro M, Vignudelli S, Álvarez O, Cipollini P, Mañanes R, Bruno M, Lopez-Carmona P, Izquierdo A (2019a) Wind-induced cross-strait sea level variability in the Strait of Gibraltar using coastal altimetry and in-situ measurements. Remote Sens Environ 221:596–608. https://doi.org/10.1016/j.rse.2018.11.042

    Article  Google Scholar 

  • Gómez-Enri J, Vignudelli S, Izquierdo A, Passaro M, González C J, Cipollini P, Bruno M, Álvarez O, Mañanes R (2019b) Sea level variability in the Strait of Gibraltar from along-track high spatial resolution altimeter products. In: Proceedings of international association of geodesy symposia—international review workshop on satellite altimetry Cal/Val activities and applications, 23–26 April 2018, Crete, Greece. Springer, Berlin, pp 1–10. https://doi.org/10.1007/1345_2019_54

  • Guo J, Gao Y, Hwang C, Sun J (2010) A multi-subwaveform parametric retracker of the radar satellite altimetric waveform and recovery of gravity anomalies over coastal oceans. Sci China Earth Sci 53(4):610–616. https://doi.org/10.1007/s11430-009-0171-3

    Article  Google Scholar 

  • Halpern BS, Frazier M, Potapenko J, Casey KS, Koenig K, Longo C et al (2015) Spatial and temporal changes in cumulative human impacts on the world’s ocean. Nat Commun 6:7615. https://doi.org/10.1038/ncomms8615

    Article  Google Scholar 

  • Hauser D, Tison C, Amiot T, Delaye L, Corcoral N, Castillan P (2017) SWIM: the first spaceborne wave scatterometer. IEEE Trans Geosci Remote Sens 55(5):3000–3014. https://doi.org/10.1109/TGRS.2017.2658672

    Article  Google Scholar 

  • He L, Li G, Li K, Shu Y (2014) Estimation of regional sea level change in the Pearl River Delta from tide gauge and satellite altimetry data. Estuar Coast Shelf Sci 141:69–77. https://doi.org/10.1016/j.ecss.2014.02.005

    Article  Google Scholar 

  • Heslop EE, Sánchez-Román A, Pascual A, Rodríguez D, Reeve KA, Faugère Y, Raynal M (2017) Sentinel-3A views ocean variability more accurately at finer resolution. Geophys Res Lett. https://doi.org/10.1002/2017GL076244

    Article  Google Scholar 

  • Hwang C, Hsu HY, Jang RJ (2002) Global mean sea surface and marine gravity anomaly from multi-satellite altimetry: applications of deflection-geoid and inverse Vening Meinesz formulae. J Geod 76(8):407–418. https://doi.org/10.1007/s00190-002-0265-6

    Article  Google Scholar 

  • Idris NH, Deng X (2012) The retracking technique on multi-peak and quasi-specular waveforms for Jason-1 and Jason-2 missions near the coast. Mar Geod 35(sup1):217–237. https://doi.org/10.1080/01490419.2012.718679

    Article  Google Scholar 

  • Idžanović M, Ophaug V, Andersen OB (2018) Coastal sea level from CryoSat-2 SARIn altimetry in Norway. Adv Space Res 62(6):1344–1357. https://doi.org/10.1016/j.asr.2017.07.043

    Article  Google Scholar 

  • Klein P, Lapeyre G (2009) The oceanic vertical pump induced by mesoscale and submesoscale turbulence. Annu Rev Mar Sci 1:351–375. https://doi.org/10.1146/annurev.marine.010908.163704

    Article  Google Scholar 

  • Kummu M, De Moel H, Salvucci G, Viviroli D, Ward PJ, Varis O (2016) Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th–21st centuries. Environ Res Lett 11(3):034010. https://doi.org/10.1088/1748-9326/11/3/034010

    Article  Google Scholar 

  • Labroue S, Gaspar P, Dorandeu J, Ogor F, Zanife OZ (2006) Overview of the improvements made on the empirical determination of the sea state bias correction. In: Proceedings of 15 years of progress in radar altimetry symposium, Venice, 13–18 March, 2006, ESA SP614

  • Le Bars Y, Lyard F, Jeandel C, Dardengo L (2010) The AMANDES tidal model for the Amazon estuary and shelf. Ocean Model 31(3):132–149. https://doi.org/10.1016/j.ocemod.2009.11.001

    Article  Google Scholar 

  • Legeais JF, Ablain M, Zawadzki L, Zuo H, Johannessen JA, Scharffenberg MG, Fenoglio-Marc L, Fernandes J, Andersen OB, Rudenko S, Cipollini P, Quartly GD, Passaro M, Cazenave A, Cipollini P (2018) An improved and homogeneous altimeter sea level record from the ESA climate change initiative. Earth Syst Sci Data 10:281–301. https://doi.org/10.5194/essd-10-281-2018

    Article  Google Scholar 

  • Lillibridge J, Lin M, Shum CK (2013) Hurricane Sandy storm surge measured by satellite altimetry. Oceanography 26(2):8–9. https://doi.org/10.5670/oceanog.2013.18

    Article  Google Scholar 

  • Madsen KS, Hoyer JL, Fu W, Donlon C (2015) Blending of satellite and tide gauge sea level observations and its assimilation in a storm surge model of the North Sea and Baltic Sea. J Geophys Res Oceans 120(9):6405–6418. https://doi.org/10.1002/2015JC011070

    Article  Google Scholar 

  • Maraldi C, Galton-Fenzi B, Lyard F, Testut L, Coleman R (2007) Barotropic tides of the southern Indian Ocean and the Amery Ice Shelf cavity. Geophys Res Lett. https://doi.org/10.1029/2007gl030900

    Article  Google Scholar 

  • Marcos M, Wöppelmann G, Matthews A, Ponte RM, Birol F, Ardhuin F, Coco G, Santamaría-Gómez A, Ballu V, Testut L, Chambers D, Stopa JE (2019) Coastal sea level and related fields from existing observing systems. Surv Geophys. https://doi.org/10.1007/s10712-019-09513-3

    Article  Google Scholar 

  • Neumann B, Vafeidis AT, Zimmermann J, Nicholls RJ (2015) Future coastal population growth and exposure to sea-level rise and coastal flooding: a global assessment. PLoS ONE 10:e0118571. https://doi.org/10.1371/journal.pone.0118571

    Article  Google Scholar 

  • Obligis E, Desportes C, Eymard L, Fernandes ML, Lázaro C, Nunes AL (2011) Tropospheric corrections for coastal altimetry. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 147–176. https://doi.org/10.1007/978-3-642-12796-0_6

    Chapter  Google Scholar 

  • Pairaud IL, Lyard F, Auclair F, Letellier T, Marsaleix P (2008) Dynamics of the semi-diurnal and quarter-diurnal internal tides in the Bay of Biscay. Part 1: barotropic tides. Cont Shelf Res 28(10):1294–1315. https://doi.org/10.1016/j.csr.2008.03.004

    Article  Google Scholar 

  • Passaro M, Cipollini P, Vignudelli S, Quartly GD, Snaith HM (2014) ALES: a multi-mission adaptive subwaveform retracker for coastal and open ocean altimetry. Remote Sens Environ 145:173–189. https://doi.org/10.1016/j.rse.2014.02.008

    Article  Google Scholar 

  • Passaro M, Cipollini P, Benveniste J (2015) Annual sea level variability of the coastal ocean: the Baltic Sea-North Sea transition zone. J Geophys Res Oceans 120(4):3061–3078. https://doi.org/10.1002/2014JC010510

    Article  Google Scholar 

  • Passaro M, Dinardo S, Quartly GD, Snaith HM, Benveniste J, Cipollini P, Lucas B (2016). Cross-calibrating ALES Envisat and CryoSat-2 Delay–Doppler: a coastal altimetry study in the Indonesian Seas. Adv Space Res 58(3):289–303

    Article  Google Scholar 

  • Passaro M, Nadzir ZA, Quartly GD (2018) Improving the precision of sea level data from satellite altimetry with high-frequency and regional sea state bias corrections. Remote Sens Environ 18:245–254. https://doi.org/10.1016/j.rse.2018.09.007

    Article  Google Scholar 

  • Peng F, Deng X (2018) Validation of improved significant wave heights from the Brown-Peaky (BP) retracker along the east coast of Australia. Remote Sens 10(7):1072. https://doi.org/10.3390/rs10071072

    Article  Google Scholar 

  • Piccioni G, Dettmering D, Passaro M, Schwatke C, Bosch W, Seitz F (2018) Coastal improvements for tide models: the impact of ALES retracker. Remote Sens 10(5):700

    Article  Google Scholar 

  • Piecuch CG, Bittermann K, Kemp AC, Ponte RM, Little CM, Engelhart SE, Lentz SJ (2018) River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proc Natl Acad Sci. https://doi.org/10.1073/pnas.1805428115

    Article  Google Scholar 

  • Pires N, Fernandes MJ, Gommenginger C, Scharroo R (2016) A conceptually simple modeling approach for Jason-1 sea state bias correction based on 3 parameters exclusively derived from altimetric information. Remote Sens 8(7):576. https://doi.org/10.3390/rs8070576

    Article  Google Scholar 

  • Pires N, Fernandes MJ, Gommenginger C, Scharroo R (2018) Improved sea state bias estimation for altimeter reference missions with altimeter-only three-parameter models. IEEE Trans Geosci Remote Sens 99:1–15. https://doi.org/10.1109/TGRS.2018.2866773

    Article  Google Scholar 

  • Ponte R, Carson M, Cirano M, Domingues C, Jevrejeva S, Marcos M, Mitchum G, Van de Wal RSW, Woodworth PL, Ablain M, Ardhuin F, Ballu V, Becker M, Benveniste J, Birol F, Bradshaw E, Cazenave A, Demey-Fremaux P, Durand F, Ezer T, Fu LL, Fukumori I, Gordon K, Gravelle M, Griffies SM, Han W, Hibbert A, Hughes CW, Idier D, Kourafalou VH, Little CM, Matthews A, Melet A, Merrifield M, Meyssignac B, Minobe S, Penduff T, Picot N, Piecuch C, Ray RD, Richards L, Santamaria- Gómez A, Stammer D, Staneva J, Testut L, Thompson K, Thompson P, Vignudelli S, Williams J, Williams SDP, Wöppelmann G, Zanna L, Zhang X (2019) Towards comprehensive observing and modeling systems for monitoring and predicting regional to coastal sea level, OceanObs’19 community white paper. Front Mar Sci J Spec Sect Coast Ocean Process. https://doi.org/10.3389/fmars.2019.00437

    Article  Google Scholar 

  • Pujol MI, Schaeffer P, Faugère Y, Raynal M, Dibarboure G, Picot N (2018) Gauging the improvement of recent mean sea surface models: a new approach for identifying and quantifying their errors. J Geophys Res Oceans 123(8):5889–5911. https://doi.org/10.1029/2017JC013503

    Article  Google Scholar 

  • Qiu B, Chen S, Klein P, Wang J, Fu L-L, Menemenlis D (2018) Seasonality in transition scale from balanced to unbalanced motions in the world ocean. J Phys Oceanogr 48:591–605. https://doi.org/10.1175/JPO-D-17-0169.1

    Article  Google Scholar 

  • Quartly GD (2010) Hyperbolic retracker: removing bright target artefacts from altimetric waveform data. In: Proceedings of living planet symposium 2010, Bergen, Norway, 28 June–2 July 2007, ESA SP-686, ESA Publication, SP-686

  • Ray RD, Egbert GD (2017) Tides and satellite altimetry. In situ observations needed to complement, validate, and interpret satellite altimetry. In: Stammer D, Cazenave A (eds) Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, FL, pp 427–458

    Chapter  Google Scholar 

  • Ray RD, Egbert GD, Erofeeva SY (2011) Tide predictions in shelf and coastal waters: status and prospects. In: Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 191–216. https://doi.org/10.1007/978-3-642-12796-0_8

    Chapter  Google Scholar 

  • Raynal M, Labroue S, Moreau T, Boy F, Picot N (2018) From conventional to Delay Doppler altimetry: a demonstration of continuity and improvements with the Cryosat-2 mission. Adv Space Res 62(6):1564–1575. https://doi.org/10.1016/j.asr.2018.01.006

    Article  Google Scholar 

  • Restano M, Passaro M, Benveniste J (2018) New achievements in coastal altimetry. Eos. https://doi.org/10.1029/2018EO106087

    Article  Google Scholar 

  • Roblou L, Lamouroux J, Bouffard J, Lyard F, Le Hénaff M, Lombard A, Marsaleix P, De Mey P, Birol F (2011) Post-processing altimeter data towards coastal applications and integration into coastal models. In: Vignudelli S, Kostianoy A, Cipollini P, Benveniste J (eds) Coastal altimetry. Springer, Berlin, pp 217–246. https://doi.org/10.1007/978-3-642-12796-0_9

    Chapter  Google Scholar 

  • Roca M, Laxon S, Zeli C (2009) The EnviSat-RA2 instrument design and tracking performance. IEEE Trans Geosci Remote Sens 47:3489–3506. https://doi.org/10.1109/TGRS.2009.2020793

    Article  Google Scholar 

  • Rodríguez E (2016) Surface water and ocean topography mission project. Science requirements doc., revision A. California Institute of Technology Jet Propulsion Laboratory Publ. JPL D-61923

  • Roemmich D, Woodworth P, Jevrejeva S, Purkey S, Lankhorst M, Send U, Nikolai Maximenko N (2017) In situ observations needed to complement, validate, and interpret satellite altimetry. In: Stammer D, Cazenave A (eds) Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, FL, pp 113–147

    Chapter  Google Scholar 

  • Roscher R, Uebbing B, Kusche J (2017) STAR: spatio-temporal altimeter waveform retracking using sparse representation and conditional random fields. Remote Sens Environ 201:148–164. https://doi.org/10.1016/j.rse.2017.07.024

    Article  Google Scholar 

  • Scharroo R, Leuliette EW, Lillibridge JL, Byrne D, Naeije MC, Mitchum GT (2013) RADS: consistent multi-mission products. In: Proceedings of 20 years of progress in radar altimetry symposium, Venice, Italy, 24–29 September 2012, ESA SP-710. https://doi.org/10.5270/esa.sp-710.altimetry2012

  • Stammer D, Cazenave A (2017) Satellite altimetry over oceans and land surfaces. CRC Press, Boca Raton, FL, p 670

    Book  Google Scholar 

  • Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrère L, Cheng Y, Chinn DS, Dushaw BD, Egbert GD, Erofeeva SY, Fok HS, Green JAM, Griffiths S, King MA, Lapin V, Lemoine FG, Luthcke SB, Lyard F, Morison J, Müller M, Padman L, Richman JG, Shriver JF, Shum CK, Taguchi E, Yi Y (2014) Accuracy assessment of global barotropic ocean tide models. Rev Geophys 52(3):243–282. https://doi.org/10.1002/2014RG000450

    Article  Google Scholar 

  • Toublanc F, Ayoub NK, Lyard F, Marsaleix P, Allain DJ (2018) Tidal downscaling from the open ocean to the coast: a new approach applied to the Bay of Biscay. Ocean Model 124:16–32. https://doi.org/10.1016/j.ocemod.2018.02.001

    Article  Google Scholar 

  • Tran N, Vandemark D, Chapron B, Labroue S, Feng H, Beckley B, Vincent P (2006) New models for satellite altimeter sea state bias correction developed using global wave model data. J Geophys Res 111:C09009. https://doi.org/10.1029/2005JC003406

    Article  Google Scholar 

  • Tran N, Labroue S, Philipps S, Bronner E, Picot N (2010) Overview and update of the sea state bias corrections for the Jason-2, Jason-1 and TOPEX missions. Mar Geod 33:348. https://doi.org/10.1080/01490419.2010.487788

    Article  Google Scholar 

  • Troupin C, Pascual A, Valladeau G, Pujol I, Lana A, Heslop E, Ruiz S, Torner M, Picot N, Tintoré J (2015) Illustration of the emerging capabilities of SARAL/AltiKa in the coastal zone using a multi-platform approach. Adv Space Res 55(1):51–59. https://doi.org/10.1016/j.asr.2014.09.011

    Article  Google Scholar 

  • Valladeau G, Thibaut P, Picard B, Poisson JC, Tran N, Picot N, Guillot A (2015) Using SARAL/AltiKa to improve Ka-band altimeter measurements for coastal zones, hydrology and ice: the PEACHI prototype. Mar Geod 38(sup1):124–142. https://doi.org/10.1080/01490419.2015.1020176

    Article  Google Scholar 

  • Verron J, Bonnefond P, Aouf L, Birol F, Bhowmick SA, Calmant S, Conchy T, Crétaux J-F, Dibarboure G, Dubey AK, Faugère Y, Guerreiro K, Gupta PK, Hamon M, Jebri F, Kumar R, Morrow R, Pascual A, Pujol M-I, Rémy E, Rémy F, Smith WHF, Tournadre J, Vergara O (2018) The benefits of the Ka-band as evidenced from the SARAL/AltiKa altimetric mission: scientific applications. Remote Sens 10:163. https://doi.org/10.3390/rs10020163

    Article  Google Scholar 

  • Vieira T, Fernandes MJ, Lázaro C (2018) Independent assessment of on-board microwave radiometer measurements in coastal zones using tropospheric delays from GNSS. IEEE Trans Geosci Remote Sens. https://doi.org/10.1109/TGRS.2018.2869258

    Article  Google Scholar 

  • Vignudelli S, Cipollini P, Roblou L, Lyard F, Gasparini GP, Manzella G, Astraldi M (2005) Improved satellite altimetry in coastal systems: case study of the Corsica Channel (Mediterranean Sea). Geophys Res Lett 32:L07608. https://doi.org/10.1029/2005GL022602

    Article  Google Scholar 

  • Vignudelli S, Snaith HM, Lyard F, Cipollini P, Birol F, Bouffard J, Roblou L (2006) Satellite radar altimetry from open ocean to coasts: challenges and perspectives. In: Proceedings of 5th Society of Photo-Optical Instrumentation Engineers (SPIE) Asia-Pacific remote sensing symposium, Panaji, Goa, India, 13–17 November 2006, 6406, 64060L, pp 1–12. https://doi.org/10.1117/12.694024

  • Vignudelli S, Vignudelli S, Kostianoy AG, Cipollini P, Benveniste J (eds) (2011a) Coastal altimetry. Springer, Berlin. https://doi.org/10.1007/978-3-642-12796-0

    Book  Google Scholar 

  • Vignudelli S, Cipollini P, Gommenginger C, Snaith H, Coelho H, Fernandes J, Lazaro C, Nunes A, Gómez-Enri J, Martin-Puig C, Woodworth P, Dinardo S, Benveniste J (2011b) Satellite altimetry: sailing closer to the coast. In: Gower J, Levy G, Heron M, Tang D, Katsaros K, Singh R (eds) Remote sensing of the changing oceans. Springer, Berlin, pp 217–238. https://doi.org/10.1007/978-3-642-16541-2_11

    Chapter  Google Scholar 

  • Vignudelli S, De Basio F, Scozzari A, Zecchetto S, Papa A (2019) Sea level trends and variability in the Adriatic Sea and around Venice. In: Proceedings of international association of geodesy symposia—international review workshop on satellite altimetry Cal/Val activities and applications, 23–26 April 2018, Crete, Greece, 1–10, Springer, Berlin. https://doi.org/10.1007/1345_2018_51

  • Vu PL, Frappart F, Darrozes J, Marieu V, Blarel F, Ramillien G, Bonnefond P, Birol F (2018) Multi-satellite altimeter validation along the French Atlantic Coast in the Southern Bay of Biscay from ERS-2 to SARAL. Remote Sens 10(1):93. https://doi.org/10.3390/rs10010093

    Article  Google Scholar 

  • Wang J, Fu LL, Torres HG, Chen S, Qiu B, Menemenlis D (2019) On the spatial scale to be resolved by the surface water and ocean topography Ka-band fadar interferometer. J Atmos Ocean Technol 36(1):87–99. https://doi.org/10.1175/JTECH-D-18-0119.1

    Article  Google Scholar 

  • Woodworth PL, Hunter JR, Marcos M, Caldwell P, Menéndez M, Haigh I (2016) Towards a global higher-frequency sea level dataset. Geosci Data J 3(2):50–59. https://doi.org/10.5285/3b602f74-8374-1e90-e053-6c86abc08d39

    Article  Google Scholar 

  • Woodworth PL, Wöppelmann G, Marcos M, Gravelle M, Bingley RM (2017) Why we must tie satellite positioning to tide gauge data. Eos 98(4):13–15. https://doi.org/10.1029/2017EO064037

    Article  Google Scholar 

  • Wright LD, Nichols CR (2018) Tomorrow’s coasts: complex and impermanent, vol 27. Coastal research library. Springer, Berlin. https://doi.org/10.1007/978-3-319-75453-6

    Book  Google Scholar 

  • Wright LD, Syvitski JPM, Nichols CR (2018) Sea level rise: recent trends and future projections. In: Wright LD, Nichols CR (eds) Tomorrow’s coasts: complex and impermanent. Springer, Berlin. https://doi.org/10.1007/978-3-319-75453-6

    Chapter  Google Scholar 

  • Xu XY, Birol F, Cazenave A (2018) Evaluation of coastal sea level offshore Hong Kong from Jason-2 altimetry. Remote Sens 10(2):282. https://doi.org/10.3390/rs10020282

    Article  Google Scholar 

  • Yang Y, Hwang C, Hsu HJ, Dongchen E, Wang H (2011) A subwaveform threshold retracker for ERS-1 altimetry: a case study in the Antarctic Ocean. Comput Geosci 41:88–98. https://doi.org/10.1016/j.cageo.2011.08.017

    Article  Google Scholar 

  • Yang L, Lin M, Liu Q, Pan D (2012) A coastal altimetry retracking strategy based on waveform classification and sub-waveform extraction. Int J Remote Sens 33(24):7806–7819. https://doi.org/10.1080/01431161.2012.701350

    Article  Google Scholar 

Download references

Acknowledgements

Thanks go to the European Space Agency that supported the development and exploitation of coastal altimetry with various scientific projects (COASTALT, Contract No. 21201/08/I-LG; eSurge Venice, Contract No. 4000104485/11/I-LG; C-TEP, Contract No. C_TEP.1313.ACR-CNR.i1r0; CCI+ Bridging phase, Contract No. 4000109872/13/I-NB; SCOOP, Contract No. 4000115385/15/I-BG and that has organized and financially supported the gathering of the Coastal Altimetry Community with regular Coastal Altimetry Workshops in the past 10 years.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefano Vignudelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vignudelli, S., Birol, F., Benveniste, J. et al. Satellite Altimetry Measurements of Sea Level in the Coastal Zone. Surv Geophys 40, 1319–1349 (2019). https://doi.org/10.1007/s10712-019-09569-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-019-09569-1

Keywords

Navigation