Skip to main content
Log in

Minimum mass–radius ratio for charged gravitational objects

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We rigorously prove that for compact charged general relativistic objects there is a lower bound for the mass–radius ratio. This result follows from the same Buchdahl type inequality for charged objects, which has been extensively used for the proof of the existence of an upper bound for the mass–radius ratio. The effect of the vacuum energy (a cosmological constant) on the minimum mass is also taken into account. Several bounds on the total charge, mass and the vacuum energy for compact charged objects are obtained from the study of the Ricci scalar invariants. The total energy (including the gravitational one) and the stability of the objects with minimum mass–radius ratio is also considered, leading to a representation of the mass and radius of the charged objects with minimum mass–radius ratio in terms of the charge and vacuum energy only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chodos A., Jaffe R.L., Johnson K., Thorn C.B. and Weisskopf V.F. (1974). Phys. Rev. D9: 3471

    ADS  MathSciNet  Google Scholar 

  2. Chodos A., Jaffe R.L., Johnson K. and Thorn C.B. (1974). Phys. Rev. D10: 2599

    ADS  MathSciNet  Google Scholar 

  3. DeGrand T., Jaffe R.L., Johnson K. and Kiskis J. (1975). Phys. Rev. D12: 2060

    ADS  Google Scholar 

  4. Hosoka A. and Toki H. (1996). Phys. Rep. 277: 65

    Article  ADS  Google Scholar 

  5. Buballa M. (2005). Phys. Rep. 407: 205

    Article  ADS  Google Scholar 

  6. Poncede Leon J. (2004). Gen. Rel. Grav. 36: 1453

    Article  ADS  MathSciNet  Google Scholar 

  7. Tiwari R.N., Rao J.R. and Kanakamedala R.R. (1984). Phys. Rev. D30: 489

    ADS  MathSciNet  Google Scholar 

  8. Lopez C.A. (1984). Phys. Rev. D30: 313

    ADS  Google Scholar 

  9. Gautreau R. (1985). Phys. Rev. D 31: 1860

    ADS  Google Scholar 

  10. Gron O. (1985). Phys. Rev. D31: 2129

    ADS  MathSciNet  Google Scholar 

  11. Tiwari R.N., Rao J.R. and Kanakamedala R.R. (1986). Phys. Rev. D 34: 1205

    ADS  MathSciNet  Google Scholar 

  12. Bonnor W.B. and Cooperstock F.I. (1989). Phys. Lett. A 139: 442

    Article  ADS  Google Scholar 

  13. Herrera L. and Verela V. (1994). Phys. Lett. A 189: 11

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Tiwari N. and Ray S. (1997). Gen. Rel. Grav. 29: 683

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Ray S., Espindola A.L., Malheiro M., Lemos J.P.S. and Zanchin V.T. (2003). Phys. Rev. D 68: 084004

    ADS  Google Scholar 

  16. Ghezzi C.R. (2005). Phys. Rev. D 72: 104017

    ADS  Google Scholar 

  17. Whinnett A.W. and Torres D.F. (1999). Phys. Rev. D 60: 104050

    ADS  Google Scholar 

  18. Yoshinoya H. and Mann R.B. (2006). Phys. Rev. D 74: 044003

    ADS  Google Scholar 

  19. Booth I.S. and Mann R.B. (1999). Phys. Rev. D 60: 124009

    ADS  MathSciNet  Google Scholar 

  20. Riess A.G. (1998). Astron. J. 116: 109

    Article  Google Scholar 

  21. Perlmutter S. (1999). Astrophys. J. 517: 565

    Article  ADS  Google Scholar 

  22. de Bernardis P. (2000). Nature 404: 995

    Article  Google Scholar 

  23. Hanany S. (2000). Astrophys. J. 545: L5

    Article  ADS  Google Scholar 

  24. Peebles P.J.E. and Ratra B. (2003). Rev. Mod. Phys. 75: 559

    Article  ADS  MathSciNet  Google Scholar 

  25. Padmanabhan T. (2003). Phys. Rep. 380: 235

    Article  MATH  ADS  MathSciNet  Google Scholar 

  26. Nojiri S. and Odintsov S.D. (2003). Phys. Lett. B 562: 147

    ADS  MathSciNet  Google Scholar 

  27. Nojiri S. and Odintsov S.D. (2003). Phys. Lett. B 571: 1

    ADS  Google Scholar 

  28. Nojiri S. and Odintsov S.D. (2004). Phys. Rev. D 70: 103522

    ADS  MathSciNet  Google Scholar 

  29. Buchdahl H.A. (1959). Phys. Rev. 116: 1027

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Mak M.K., Harko T. and Dobson P.N. (2000). Mod. Phys. Lett. A 15: 2153

    ADS  MathSciNet  Google Scholar 

  31. Böhmer C.G. (2004). Gen. Rel. Grav. 36: 1039

    Article  MATH  ADS  Google Scholar 

  32. Böhmer C.G. (2005). Ukr. J. Phys. 50: 1219

    Google Scholar 

  33. Balaguera-Antolínez A., Böhmer C.G. and Nowakowski M. (2005). Int. J. Mod. Phys. D 14: 1507

    ADS  Google Scholar 

  34. Böhmer C.G. and Harko T. (2006). Class. Quantum Grav. 23: 6479

    Article  MATH  ADS  Google Scholar 

  35. Mak M.K., Harko T. and Dobson P.N. (2001). Europhys. Lett. 55: 310

    Article  ADS  Google Scholar 

  36. Straumann N. (1984). General Relativity and Relativistic Astrophysics. Springer, Berlin

    Google Scholar 

  37. Böhmer C.G. and Harko T. (2005). Phys. Lett. B 630: 73

    ADS  Google Scholar 

  38. Landau L.D. and Lifshitz E.M. (1975). The Classical Theory of Fields. Pergamon Press, Oxford

    Google Scholar 

  39. Beckenstein J.D. (1971). Phys. Rev. D4: 2185

    ADS  Google Scholar 

  40. Katz J., Lynden-Bell D. and Israel W. (1988). Class. Quantum Grav. 5: 971

    Article  MATH  ADS  MathSciNet  Google Scholar 

  41. Gron O. and Johannesen S. (1992). Astrophys. Space Sci. 19: 411

    Google Scholar 

  42. Einstein A. (1923). The Principle of Relativity: Einstein and Others. Dover, New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Böhmer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Böhmer, C.G., Harko, T. Minimum mass–radius ratio for charged gravitational objects. Gen Relativ Gravit 39, 757–775 (2007). https://doi.org/10.1007/s10714-007-0417-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0417-3

Keywords

Navigation