Skip to main content
Log in

Effects of Schwarzschild black hole horizon on isothermal plasma wave dispersion

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The 3 + 1 GRMHD equations for Schwarzschild spacetime in Rindler coordinates with isothermal state of plasma are formulated. We consider the cases of non-rotating and rotating backgrounds with non-magnetized and magnetized plasmas. For these cases, the perturbed form of these equations are linearized and Fourier analyzed by introducing plane wave type solutions. The determinant of these equations in each case leads to two dispersion relations which give value of the wave number k. Using the wave number, we obtain information like phase and group velocities etc. which help to discuss the nature of the waves and their characteristics. These provide interesting information about the black hole magnetosphere near the horizon. There are cases of normal and anomalous dispersion. We find a case of normal dispersion of waves when the plasma admits the properties of Veselago medium. Our results agree with those of Mackay et al. according to which rotation of a black hole is required for negative phase velocity propagation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Vachaspati, T., Stojkovic, D., Krauss, L.M.: Observation of Incipient Black Holes and the Information Loss Problem, accepted for publication in Phys. Rev. D, gr-qc/0609024 (2007)

  2. Narayan R. (2005). New J. Phys. 7: 199

    Article  ADS  MathSciNet  Google Scholar 

  3. Bekenstein J.D. and Betchart G. (2006). Phys. Rev. D74: 083009

    ADS  Google Scholar 

  4. Petterson J.A. (1974). Phys. Rev. D10: 3166

    ADS  Google Scholar 

  5. Arnowitt R., Deser S. and Misner C.W. (1962). Gravitation: An Introduction to Current Research. Wiley, New York

    Google Scholar 

  6. Hawking S.W. (1974). Nature 248: 30

    Article  ADS  Google Scholar 

  7. Hawking S.W. (1975). Commun. Math. Phys. 43: 199

    Article  ADS  MathSciNet  Google Scholar 

  8. Hawking S.W. (1976). Phys. Rev. D13: 191

    ADS  MathSciNet  Google Scholar 

  9. Hartle J.B. (1973). Phys. Rev. D8: 1010

    ADS  Google Scholar 

  10. Hartle J.B. (1974). Phys. Rev. D9: 2749

    ADS  Google Scholar 

  11. Hanni R.S. and Ruffini R. (1973). Phys. Rev. D8: 3259

    ADS  Google Scholar 

  12. Hajicek P. (1974). Commun. Math. Phys. 36: 305

    Article  MATH  ADS  MathSciNet  Google Scholar 

  13. Znajek, R.L.: Ph.D. Thesis, University of Cambridge (1976)

  14. Znajek R.L. (1978). Mon. Not. R. Astron. Soc. 185: 833

    ADS  Google Scholar 

  15. Damour T. (1978). Phys. Rev. D18: 3598

    ADS  Google Scholar 

  16. Damour, T.: In: Ruffini, R (ed.) Proceedings of Second Marcel Grossman Meeting on General Relativity, North Holland, Amsterdam, 587 (1982)

  17. Damour, T.: Ph.D. Thesis, University of Paris, VI (1979)

  18. Thorne K.S. and Macdonald D.A. (1982). Mon. Not. R. Astron. Soc. 198: 339

    MATH  ADS  MathSciNet  Google Scholar 

  19. Thorne K.S. and Macdonald D.A. (1982). Mon. Not. R. Astron. Soc. 198: 345

    MATH  ADS  MathSciNet  Google Scholar 

  20. Thorne, K.S., Price, R.H., Macdonald, D.A.: Black Holes: The Membrane Paradigm. Yale University Press, New Haven (1986)

  21. Holcomb K.A. and Tajima T. (1989). Phys. Rev. D40: 3809

    ADS  Google Scholar 

  22. Holcomb K.A. (1990). Astrophys. J. 362: 381

    Article  ADS  Google Scholar 

  23. Dettmann C.P., Frankel N.E. and Kowalenko V. (1993). Phys. Rev. D48: 5655

    ADS  Google Scholar 

  24. Khanna R. (1998). Mon. Not. R. Astron. Soc. 294: 673

    Article  ADS  Google Scholar 

  25. Antón, L., Zantti, O., Miralles, J.A., Martí, J.A., Ma Ibáñez, J., Font, J.A., Pons, J.A.: Astrophys. J. 637, 296 (2006)

  26. Komissarov S.S. (2002). Mon. Not. R. Astron. Soc. 336: 759

    Article  ADS  Google Scholar 

  27. Zhang X.-H. (1989). Phys. Rev. D39: 2933

    ADS  Google Scholar 

  28. Zhang X.-H. (1989). Phys. Rev. D40: 3858

    ADS  Google Scholar 

  29. Regge T. and Wheeler J.A. (1957). Phys. Rev. 108: 1063

    Article  MATH  ADS  MathSciNet  Google Scholar 

  30. Zerilli F. (1970). Phys. Rev. D2: 2141

    ADS  MathSciNet  Google Scholar 

  31. Zerilli F. (1970). J. Math. Phys. 11: 2203

    Article  ADS  MathSciNet  Google Scholar 

  32. Zerilli F. (1970). Phys. Rev. Lett. 24: 737

    Article  ADS  Google Scholar 

  33. Price R.H. (1972). Phys. Rev. D5: 2419

    ADS  MathSciNet  Google Scholar 

  34. Price R.H. (1972). Phys. Rev. D 5: 2439

    Article  ADS  MathSciNet  Google Scholar 

  35. Wald R.M. (1974). Phys. Rev. D10: 1680

    ADS  Google Scholar 

  36. Sakai J. and Kawata T. (1980). J. Phys. Soc. Jpn. 49: 747

    Article  ADS  MathSciNet  Google Scholar 

  37. Buzzi V., Hines K.C. and Treumann R.A. (1995). Phys. Rev. D51: 6663

    ADS  Google Scholar 

  38. Buzzi V., Hines K.C. and Treumann R.A. (1995). Phys. Rev. 51: 6677

    ADS  Google Scholar 

  39. Sharif M., Sheikh U. (2007) Gen. Relat. Gravit. 39:1437

    Article  MATH  ADS  MathSciNet  Google Scholar 

  40. Mackay T.G., Lakhtakia A. and Setiawan S. (2005). New J. Phys. 7: 171

    Article  Google Scholar 

  41. Zel’dovich Ya.B. and Novikov I.D. (1964). Uspekhi Fiz. Nauk. 84: 377

    Google Scholar 

  42. Zel’dovich Ya.B. and Novikov I.D. (1965). English translation in Sov. Phys.-Uspekhi 7: 763

    Article  MathSciNet  Google Scholar 

  43. Zel’dovich Ya.B. and Novikov I.D. (1965). Uspekhi Fiz. Nauk. 86: 477

    Google Scholar 

  44. Zel’dovich Ya.B. and Novikov I.D. (1966). English translation in Sov. Phys. Uspekhi 8: 522

    Article  MathSciNet  Google Scholar 

  45. Jackson J.D. (1999). Classical Electrodynamics. Wiley, London

    MATH  Google Scholar 

  46. Veselago V.G. (1968). Sov. Phys. Usp. 10: 509

    Article  Google Scholar 

  47. Woodley, J.F., Mojahedi, M.: Negative Group Velocity in Left-Handed Materials, Antennas and Propagation Society International Symposium and USNC/CNC/URSI National Radio Science Meeting, Columbus, Ohio, USA, June 22–27, 2003, vol. 4, p 643 (2003)

  48. Mackay T.G., Lakhtakia A. and Setiawan S. (2005). Europhys. Lett. 71: 925

    Article  ADS  Google Scholar 

  49. Ross, B.M., Mackay, T.G., Lakhtakia, A.: Effect of Charge on Negative-Phase-Velocity Propagation of Electromagnetic Waves in the Ergosphere of a Rotating Black Hole, astro-ph/0608412

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Sharif.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sharif, M., Sheikh, U. Effects of Schwarzschild black hole horizon on isothermal plasma wave dispersion. Gen Relativ Gravit 39, 2095–2124 (2007). https://doi.org/10.1007/s10714-007-0505-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0505-4

Keywords

Navigation