Skip to main content
Log in

Explicit cosmological coarse graining via spatial averaging

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The present matter density of the Universe, while highly inhomogeneous on small scales, displays approximate homogeneity on large scales. We propose that whereas it is justified to use the Friedmann–Lemaître–Robertson–Walker (FLRW) line element (which describes an exactly homogeneous and isotropic universe) as a template to construct luminosity distances in order to compare observations with theory, the evolution of the scale factor in such a construction must be governed not by the standard Einstein equations for the FLRW metric, but by the modified Friedmann equations derived by Buchert (Gen Relat Gravit 32:105, 2000; 33:1381, 2001) in the context of spatial averaging in Cosmology. Furthermore, we argue that this scale factor, defined in the spatially averaged cosmology, will correspond to the effective FLRW metric provided the size of the averaging domain coincides with the scale at which cosmological homogeneity arises. This allows us, in principle, to compare predictions of a spatially averaged cosmology with observations, in the standard manner, for instance by computing the luminosity distance versus red-shift relation. The predictions of the spatially averaged cosmology would in general differ from standard FLRW cosmology, because the scale-factor now obeys the modified FLRW equations. This could help determine, by comparing with observations, whether or not cosmological inhomogeneities are an alternative explanation for the observed cosmic acceleration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Weinberg S. (1972). Gravitation and Cosmology. Wiley, London

    Google Scholar 

  2. Padmanabhan T. (2002). Theoretical Astrophysics, vol. 3. Cambridge University Press, London

    MATH  Google Scholar 

  3. Trodden, M., Carroll, S.: TASI Lectures, Introduction to Cosmology (2004) [astro-ph/0401547]

  4. Räsänen S. (2006). JCAP 0611: 003, astro-ph/0607626

    Google Scholar 

  5. Hoyle F. and Vogeley M.S. (2002). Astrophys. J. 566: 641, astro-ph/0109357

    Article  ADS  Google Scholar 

  6. Hoyle F. and Vogeley M.S. (2004). Astrophys. J. 607: 751, astro-ph/0312533

    Article  ADS  Google Scholar 

  7. Vogeley, M.S., et al.: In: Diaferio, A. (ed.) Proceedings IAU COlloquium No. 195 (2004)

  8. Patiri S.G. et al (2006). Mon. Not. R. Astr. Soc. 369: 335, astro-ph/0506668

    Article  ADS  Google Scholar 

  9. Tomita K. (2001). Mon. Not. R. Astr. Soc. 326: 287, astro-ph/0011484

    Article  ADS  Google Scholar 

  10. Tomita K. (2001). Prog. Theor. Phys. 106: 929, astro-ph/0104141

    Article  ADS  Google Scholar 

  11. Tikhonov, A.V., Karachentsev, I.D.: (2006)[astro-ph/0609109]

  12. Hogg D.W. et al (2005). Astrophys. J. 642: 54, astro-ph/0411197

    Article  ADS  Google Scholar 

  13. Pietronero L. and Labini F.S. (2006). AIP Conf. Proc. 822: 294, astro-ph/0406202

    Article  Google Scholar 

  14. Joyce M. et al (2005). Astron. Astrophys. 443: 11, astro-ph/0501583

    Article  ADS  Google Scholar 

  15. Kerscher M., Schmalzing J., Buchert T. and Wagner H. (1998). Astron. Astrophys. 333: 1, astro-ph/9704028

    ADS  Google Scholar 

  16. Kerscher M. et al (2001). Astron. Astrophys. 373: 1, astro-ph/0101238

    Article  ADS  Google Scholar 

  17. Hikage, C., et al.: (SDSS collaboration), Publ. Astron. Soc. Jap., 55, 911 [astro-ph/0304455]. See also Ref. [4] (2003)

  18. Buchert T. (2000). Gen. Relat. Gravit. 32: 105, gr-qc/9906015

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Buchert T. (2001). Gen. Relat. Gravit. 33: 1381, gr-qc/0102049

    Article  MATH  ADS  MathSciNet  Google Scholar 

  20. Dyer C.C. and Roeder R.C. (1972). Astrophys. J. 174: L115

    Article  ADS  Google Scholar 

  21. Dyer, C.C., Roeder, R.C.: 180, L31 (1973)

  22. Dyer C.C. and Roeder R.C. (1974). Astrophys. J. 189: 167

    Article  ADS  Google Scholar 

  23. Roeder R.C. (1975). Astrophys. J. 196: 671

    Article  ADS  Google Scholar 

  24. Sasaki M. (1987). Mon. Not. R. Astr. Soc. 228: 653

    MATH  ADS  Google Scholar 

  25. Palle D. (2002). Nuovo Cim. 117: 687, astro-ph/0205462

    ADS  Google Scholar 

  26. Mustapha N., Hellaby C. and Ellis G.F.R. (1997). Mon. Not. R. Astron. Soc. 292: 817, gr-qc/9808079

    ADS  Google Scholar 

  27. Celeriér M.N. (2000). Astron. Astrophys. 353: 63, astro-ph/9907206

    Google Scholar 

  28. Iguchi H., Nakamura T. and Nakao K. (2002). Prog. Theor. Phys. 108: 809, astro-ph/0112419

    Article  MATH  ADS  Google Scholar 

  29. Moffat J.W. (2005). JCAP 10: 012–astroph0502110

    ADS  Google Scholar 

  30. Alnes H., Amazguioui M. and Gron O. (2006). Phys. Rev. D 73: 083519, astro-ph/0512006

    Article  ADS  Google Scholar 

  31. Mansouri, R.: (2005) [astro-ph/0512605]

  32. Vanderveld R.A., Flanagan E.E. and Wasserman I. (2006). Phys. Rev. D 74: 023506, astro-ph/0602476

    Article  ADS  Google Scholar 

  33. Garfinkle D. (2006). Class. Quant. Gravit. 23: 4811, gr-qc/0605088

    Article  MATH  ADS  MathSciNet  Google Scholar 

  34. Enqvist K. and Mattsson T. (2007). JCAP 0702: 019, astro-ph/0609120

    ADS  Google Scholar 

  35. Celeriér, M.N.: In: Proceedings of Week of French Astrophysics (SF2A 2006) (in french), Paris (2006, in press) [astro-ph/0609352]

  36. Riess A.G. et al (1998). Astron. J. 116: 1009, astro-ph/9805201

    Article  ADS  Google Scholar 

  37. Perlmutter S. et al (1999). Astrophys. J. 517: 565, astro-ph/9812133

    Article  ADS  Google Scholar 

  38. Hirata C.M. and Seljak U. (2005). Phys. Rev. D72: 083501, astro-ph/0503582

    ADS  Google Scholar 

  39. Gruzinov A., Kleban M., Porrati M. and Redi M. (2006). JCAP 0612: 001, astro-ph/0609553

    ADS  Google Scholar 

  40. Kolb E., Matarresse S. and Riotto A. (2006). New J. Phys. 8: 322

    Article  ADS  Google Scholar 

  41. Kolb, E., Matarresse, S., Riotto, A.: (2005) [astro-ph/0511073]

  42. Paranjape A. and Singh T.P. (2006). Class. Quant. Gravit. 23: 6955, astro-ph/0605195

    Article  MATH  ADS  MathSciNet  Google Scholar 

  43. Buchert T. and Ehlers J. (1997). Astron. Astrophys. 320: 1

    ADS  Google Scholar 

  44. Buchert T., Kerscher M. and Sicka C. (2000). Phys. Rev. D62: 043525, astro-ph/9912347

    ADS  Google Scholar 

  45. Ishibashi A. and Wald R.M. (2006). Class. Quant. Gravit. 23: 235, gr-qc/0509108

    Article  MATH  ADS  MathSciNet  Google Scholar 

  46. Buchert T., Larena J. and Alimi J.-M. (2006). Class. Quant. Gravit. 23: 6379, gr-qc/0606020

    Article  MATH  ADS  MathSciNet  Google Scholar 

  47. Landau L. and Lifshitz E.M. (1987). Fluid Mechanics, 2nd edn. Butterworth-Heinemann, London

    MATH  Google Scholar 

  48. Ellis G.F.R. and Buchert T. (2005). Phys. Lett. A 347: 38, gr-qc/0506106

    Article  ADS  MathSciNet  Google Scholar 

  49. Ellis, G.F.R.: In: Reidel, D., Bertotti, B., et al. (ed.) General Relativity and Gravitation Publishing Co, Dordrecht (1984)

  50. Futamase T. (2175). (1988). Phys. Rev. Lett. 61: 61

    Google Scholar 

  51. Kasai M. (1992). Phys. Rev. Lett. 69: 2330

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Noonan T.W. (1984). Gen. Relat. Gravit. 16: 1103

    Article  ADS  MathSciNet  Google Scholar 

  53. Zalaletdinov R.M. (1992). Gen. Relat. Gravit. 24: 1015

    Article  ADS  MathSciNet  Google Scholar 

  54. Zalaletdinov R.M. (1992). Gen. Relat. Gravit. 25: 673

    Article  ADS  MathSciNet  Google Scholar 

  55. Boersma J.P. (1998). Phys. Rev. D57: 798, gr-qc/9711057

    ADS  Google Scholar 

  56. Coley A.A., Pelavas N. and Zalaletdinov R.M. (2005). Phys. Rev. Lett. 95: 151102, gr-qc/0504115

    Article  ADS  MathSciNet  Google Scholar 

  57. Coley A.A. and Pelavas N. (2006). Phys. Rev. D74: 087301, astro-ph/0606535

    ADS  MathSciNet  Google Scholar 

  58. Krasiński A. (1997). Inhomogeneous Cosmological Models. Cambridge University Press, London

    Google Scholar 

  59. Stoeger W.R., Ellis G.F.R. and Hellaby C. (1987). Mon. Not. R. Astr. Soc. 226: 373

    ADS  Google Scholar 

  60. Buchert T. and Carfora M. (2002). Class. Quant. Gravit. 19: 6109, gr-qc/0210037

    Article  MATH  ADS  MathSciNet  Google Scholar 

  61. Buchert T. and Carfora M. (2003). Phys. Rev. Lett. 90: 031101, gr-qc/0210045

    Article  ADS  Google Scholar 

  62. Buchert, T., Carfora, M.: In: Proceedings of 12th Workshop on General Relativity and Gravitation (JGRG 12), Tokyo (2002) [astro-ph/0312621]

  63. Carfora M. and Piotrkowska K. (1995). Phys. Rev. D 52: 4393, gr-qc/9502021

    Article  ADS  MathSciNet  Google Scholar 

  64. Li, N., Schwarz, D.: (2007) [gr-qc/0702043]

  65. Räsänen, S.: arXiv:0705.2992 [astro-ph] (2007)

  66. Mersini-Houghton, L., Wang, Y., Mukherjee, P., Kafexhiu, E.: arXiv:0705.0332 [astro-ph] (2007)

  67. Zalaletdinov R.M. (1993). Gen. Relat. Gravit. 25: 673

    Article  MATH  ADS  MathSciNet  Google Scholar 

  68. Zalaletdinov R.M. (1992). Gen. Relat. Gravit. 24: 1015

    Article  ADS  MathSciNet  Google Scholar 

  69. Paranjape A. and Singh T.P. (2007). Phys. Rev. D 76: 044006, gr-qc/0703106

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aseem Paranjape.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paranjape, A., Singh, T.P. Explicit cosmological coarse graining via spatial averaging. Gen Relativ Gravit 40, 139–157 (2008). https://doi.org/10.1007/s10714-007-0523-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-007-0523-2

Keywords

Navigation