Skip to main content

Advertisement

Log in

Cosmological model with interactions in the dark sector

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

A cosmological model for the present Universe is analyzed whose constituents are a non-interacting baryonic matter field and interacting dark matter and dark energy fields. The dark energy and dark matter are coupled through their effective barotropic indexes, which are considered as functions of the ratio of their energy densities. Two asymptotically stable cases are investigated for the ratio of the dark energy densities which have their parameters adjusted by considering best fits to Hubble function data. It is shown that the deceleration parameter, the density parameters, and the luminosity distance have the correct behavior which is expected for a viable present scenario of the Universe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Riess A.G. et al.: Observational evidence from supernovae for an accelerating universe and a cosmological constant. Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Riess A.G. et al.: BVRI light curves for 22 Type Ia Supernovae. Astron. J. 117, 707 (1999)

    Article  ADS  Google Scholar 

  3. Perlmutter S. et al.: Measurements of omega and lambda from 42 high-redshift supernovae. Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  4. Astier P. et al.: The supernova legacy survey: measurement of Ω M , ΩΛ and w from the first year data set. Astron. Astrophys. 447, 31 (2006)

    Article  ADS  Google Scholar 

  5. Spergel D.N. et al.: First year Wilkinson microwave anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  6. Spergel D.N. et al.: Wilkinson microwave anisotropy probe (WMAP) three year results: implications for cosmology. Astrophys. J. Suppl. 170, 377 (2007)

    Article  ADS  Google Scholar 

  7. Eisenstein D.J. et al.: Detection of the baryon acoustic peak in the large-scale correlation Function of SDSS Luminous Red Galaxies. Astrophys. J. 633, 560 (2005)

    Article  ADS  Google Scholar 

  8. Sahni V., Starobinsky A.A.: The case for a positive cosmological lambda-term. Int. J. Mod. Phys. D 9, 373 (2000)

    ADS  Google Scholar 

  9. Sahni V.: Dark matter and dark energy. In: Papantonopoulos, E.(eds) The physics of the early universe. Lecture Notes in Physics, vol. 653, Springer, Berlin (2005)

    Google Scholar 

  10. Carroll S.M.: The Cosmological Constant. Living Rev. Rel. 4, 1 (2001)

    Google Scholar 

  11. Padmanabhan T.: Cosmological constant: the weight of the vacuum. Phys. Rept. 380, 235 (2003)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  12. Peebles P.J.E., Ratra B.: The cosmological constant and dark energy. Rev. Mod. Phys. 75, 559 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Copeland E.J., Sami M., Tsujikawa S.: Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Weinberg S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  15. Steinhardt P.J.: Critical Problems in Physics. In: Fitch V.L., Marlow D.R., Dementi M.A.E. (eds). Princeton University Press, Princeton (1997)

  16. Chimento L.P., Jakubi A.S., Pavon D.: Enlarged Q-matter cosmology. Phys. Rev. D 62, 063508 (2000)

    Article  ADS  Google Scholar 

  17. Chimento L.P., Jakubi A.S., Pavon D., Zimdahl W.: Interacting quintessence solution to the coincidence problem. Phys. Rev. D 67, 083513 (2003)

    Article  ADS  Google Scholar 

  18. Binder J.B., Kremer G.M.: Model for a Universe described by a non-minimally coupled scalar field and interacting dark matter. Gen. Relativ. Gravit. 38, 857 (2006)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  19. Tocchini-Valentini D., Amendola L.: Stationary dark energy with a baryon dominated era: solving the coincidence problem with a linear coupling. Phys. Rev. D 65, 063508 (2002)

    Article  ADS  Google Scholar 

  20. Farrar G.R., Peebles P.J.E.: Interacting dark matter and dark energy. Astrophys. J. 604, 1 (2004)

    Article  ADS  Google Scholar 

  21. Kremer G.M.: Dark energy interacting with neutrinos and dark matter: a phenomenological theory. Gen. Relativ. Gravit. 39, 965–972 (2007)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  22. Huey G., Wandelt B.D.: Interacting quintessence, the coincidence problem and cosmic acceleration. Phys. Rev. D 74, 023519 (2006)

    Article  ADS  Google Scholar 

  23. Mangano G., Miele G., Pettorino V.: Coupled quintessence and the coincidence problem. Mod. Phys. Lett. A 18, 831 (2006)

    Article  ADS  Google Scholar 

  24. Chimento, L.P., Forte, M.: Unified model of baryonic matter and dark components. Phys. Lett. B [arXiv:0706.4142] [astro-ph]

  25. Cai R.G., Wang A.: Cosmology with interaction between phantom dark energy and dark matter and the coincidence problem. JCAP 0503, 002 (2005)

    ADS  Google Scholar 

  26. Amendola L.: Coupled quintessence. Phys. Rev. D 62, 043511 (2000)

    Article  ADS  Google Scholar 

  27. Amendola L., Tocchini-Valentini D.: Stationary dark energy: the present Universe as a global attractor. Phys. Rev. D 64, 043509 (2001)

    Article  ADS  Google Scholar 

  28. Amendola L., Tocchini-Valentini D.: Baryon bias and structure formation in an accelerating Universe. Phys. Rev. D 66, 043528 (2002)

    Article  ADS  Google Scholar 

  29. Amendola L., Quercellini C., Tocchini-Valentini D., Pasqui A.: Constraints on the interaction and self-interaction of dark energy from cosmic microwave background. Astrophys. J. 583, L53 (2003)

    Article  ADS  Google Scholar 

  30. Dalal N., Abazajian K., Jenkins E.E., Manohar A.V.: Testing the cosmic coincidence problem and the nature of dark energy. Phys. Rev. Lett. 87, 141302 (2001)

    Article  ADS  Google Scholar 

  31. Amendola L., Camargo Campos G., Rosenfeld R.: Consequences of dark matter–dark energy interaction on cosmological parameters derived from SNIa data. Phys. Rev. D 75, 083506 (2007)

    Article  ADS  Google Scholar 

  32. Guo Z.K., Ohta N., Tsujikawa S.: Probing the coupling between dark components of the Universe. Phys. Rev. D 76, 023508 (2007)

    Article  ADS  Google Scholar 

  33. Boehmer C.G., Caldera-Cabral G., Lazkoz R., Maartens R.: Dynamics of dark energy with a coupling to dark matter. Phys. Rev. D 78, 023505 (2008)

    Article  ADS  Google Scholar 

  34. Pavón, D., Wang, B.: Le Châtelier-Braun Principle in Cosmological Physics. Gen. Relativ. Gravit. (2008, in press)

  35. Zimdahl W., Pavon D.: Interacting quintessence. Phys. Lett. B 521, 133 (2001)

    Article  MATH  ADS  Google Scholar 

  36. Simon J., Verde L., Jimenez R.: Constraints on the redshift dependence of the dark energy potential. Phys. Rev. D 71, 123001 (2005)

    Article  ADS  Google Scholar 

  37. Abraham R.G. et al.: The Gemini deep deep survey: I. Introduction to the survey, catalogs and composite spectra. Astron. J. 127, 2455 (2004)

    Article  ADS  Google Scholar 

  38. Treu T., Stiavelli M., Moller P., Casertano S., Bertin G.: The properties of field elliptical galaxies at intermediate redshift. II: photometry and spectroscopy of an HST selected sample. Mon. Not. R. Astron. Soc. 326, 21 (2001)

    ADS  Google Scholar 

  39. Nolan P.L., Tompkins W.F., Grenier I.A., Michelson P.F.: Variability of EGRET gamma-ray sources. Astrophys. J. 597, 615 (2003)

    Article  ADS  Google Scholar 

  40. Press W.H. et al.: Numerical Recipes. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  41. Freedman W.L. et al.: Final results from the Hubble Space Telescope key project to measure the Hubble constant. Astrophys. J. 553, 47 (2001)

    Article  ADS  Google Scholar 

  42. Virey J.M. et al.: Determination of the deceleration parameter from supernovae data. Phys. Rev. D 72, 061302(R) (2005)

    Article  ADS  Google Scholar 

  43. Riess A.G. et al.: Type Ia Supernova discoveries at z > 1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)

    Article  ADS  Google Scholar 

  44. Riess A.G. et al.: New Hubble Space Telescope discoveries of type Ia supernovae at z > 1: narrowing constraints on the early behavior of dark energy. Astrophys. J. 659, 98 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilberto M. Kremer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chimento, L.P., Forte, M. & Kremer, G.M. Cosmological model with interactions in the dark sector. Gen Relativ Gravit 41, 1125–1137 (2009). https://doi.org/10.1007/s10714-008-0694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-008-0694-5

Keywords

Navigation