Skip to main content
Log in

LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Locally rotationally symmetric Bianchi type I cosmological models are examined in the presence of dynamically anisotropic dark energy and perfect fluid. We assume that the dark energy (DE) is minimally interacting, has dynamical energy density, anisotropic equation of state parameter (EoS). The conservation of the energy-momentum tensor of the DE is assumed to consist of two separately additive conserved parts. A special law is assumed for the deviation from isotropic EoS, which is consistent with the assumption on the conservation of the energy-momentum tensor of the DE. Exact solutions of Einstein’s field equations are obtained by assuming a special law of variation for the mean Hubble parameter, which yields a constant value of the deceleration parameter. Geometrical and kinematic properties of the models and the behaviour of the anisotropy of the dark energy have been carried out. The models give dynamically anisotropic expansion history for the universe that allows to fine tune the isotropization of the Bianchi metric, hence the CMB anisotropy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Guth A.H.: Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  2. Sato K.: Mon. Notices Roy. Astron. Soc. 195, 467 (1981)

    ADS  Google Scholar 

  3. Linde A.D.: Phys. Lett. B 108, 389 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  4. Albrecht A., Steinhardt P.J.: Phys. Rev. Lett. 48, 1220 (1982)

    Article  ADS  Google Scholar 

  5. Parker L.: Phys. Rev. 183, 1057 (1969)

    Article  MATH  ADS  Google Scholar 

  6. Birrell N.D., Davies P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    MATH  Google Scholar 

  7. Mukhanov V.F., Chibisov G.V.: Sov. Phys. J. Exper. Theor. Phys. Lett. 33, 532–535 (1981)

    ADS  Google Scholar 

  8. Hawking S.W.: Phys. Lett. B 115, 295 (1982)

    Article  ADS  Google Scholar 

  9. Guth A.H., Pi S.Y.: Phys. Rev. Lett. 49, 1110 (1982)

    Article  ADS  Google Scholar 

  10. Starobinsky A.A.: Phys. Lett. B 117, 175 (1982)

    Article  ADS  Google Scholar 

  11. Bardeen J.M. et al.: Phys. Rev. D 28, 679 (1983)

    Article  ADS  Google Scholar 

  12. Mukhanov V.F. et al.: Phys. Rep. 215, 203 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  13. Peiris H.V. et al.: Astrophys. J. Suppl. Ser. 148, 213–231 (2003) [arXiv:astro-ph/0302225v2]

    Article  ADS  Google Scholar 

  14. Liddle A.R., Lyth D.H.: Cosmological Inflation and Large-Scale Structure. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  15. Smoot G.F. et al.: Astrophys. J. 396, L1 (1992)

    Article  ADS  Google Scholar 

  16. Bennett C.L. et al.: Astrophys. J. 464, L1–L4 (1996) [arXiv:astro-ph/9601067]

    Article  ADS  Google Scholar 

  17. Hinshaw G. et al.: Astrophys. J. Suppl. Ser. 148, 135 (2003) [arXiv:astro-ph/0302217v1]

    Article  ADS  Google Scholar 

  18. Hinshaw G. et al.: Astrophys. J. Suppl. Ser. 170, 288 (2007) [arXiv:astro-ph/0603451v2]

    Article  ADS  Google Scholar 

  19. Nolta M.R. et al.: Astrophys. J. Suppl. Ser. 180, 296–305 (2009) [arXiv:astro-ph/0803.0593]

    Article  ADS  Google Scholar 

  20. Hinshaw G. et al.: Astrophys. J. Suppl. Ser. 180, 225–245 (2009) [arXiv:astro-ph/0803.0732]

    Article  ADS  Google Scholar 

  21. Eriksen H.K. et al.: Astrophys. J. 605, 14–20 (2004) [arXiv:astro-ph/0307507]

    Article  ADS  Google Scholar 

  22. Copi C.J. et al.: Mon. Notices Roy. Astron. Soc. 367, 79–102 (2006) [arXiv:astro-ph/0508047]

    Article  ADS  Google Scholar 

  23. Spergel D.N. et al.: Astrophys. J. Suppl. Ser. 170, 377–408 (2007) [arXiv:astro-ph/0603449]

    Article  ADS  Google Scholar 

  24. Gold B. et al.: Astrophys. J. Suppl. Ser. 180, 265–282 (2009) [arXiv:astro-ph/0803.0715]

    Article  ADS  Google Scholar 

  25. Hill R.S. et al.: Astrophys. J. Suppl. Ser. 180, 246–264 (2009) [arXiv:astro-ph/0803.0570]

    Article  ADS  Google Scholar 

  26. Ellis G.F.R.: Gen. Relat. Gravit. 38(6), 1003–1015 (2006)

    Article  MATH  ADS  Google Scholar 

  27. Campanelli L. et al.: Phys. Rev. Lett. 97, 131302 (2006)

    Article  ADS  Google Scholar 

  28. Campanelli L. et al.: Phys. Rev. D 76, 063007 (2007) [arXiv:astro-ph/0706.3802v2]

    Article  MathSciNet  ADS  Google Scholar 

  29. Longo, M.J.: arXiv:astro-ph:/0703325, arXiv:astro-ph:/0703694, arXiv:astro-ph:/0707.3793, arXiv: astro-ph:/0708.4013

  30. Nodland B., Ralston J.P.: Phys. Rev. Lett. 78, 3043 (1997) [arXiv:astro-ph/9704196]

    Article  ADS  Google Scholar 

  31. Hutsemekers D. et al.: Astron. Astrophys. 441, 915–930 (2005) [arXiv:astro-ph/0507274]

    Article  ADS  Google Scholar 

  32. Battye R.A. et al.: Mon. Notices Roy. Astron. Soc. 385, 274–282 (2008)

    Article  ADS  Google Scholar 

  33. Borguet B. et al.: Astron. Astrophys. 478, 321–333 (2008) [arXiv:astro-ph:/0710.4048v1]

    Article  ADS  Google Scholar 

  34. Borguet, B., et al.: arXiv:astro-ph:/0710.4072v2

  35. Joshi S.A. et al.: Mon. Notices Roy. Astron. Soc. 380(1), 162–174 (2007) [arXiv:astro-ph:/0705. 2548v1]

    Article  ADS  Google Scholar 

  36. Rakic A., Schwarz D.J.: Phys. Rev. D 75, 103002 (2007) [arXiv:astro-ph/0703266v3]

    Article  ADS  Google Scholar 

  37. Rakic, A., et al.: arXiv:astro-ph:/0609188v2

  38. Ellis, G.F.R.: Modern Cosmology. In: Bonometto, S., et al. (ed.) Institute of Physics Publishing, Bristol, pp. 138–139 (2002)

  39. Rodrigues D.C.: Phys. Rev. D 77, 023534 (2008) [arXiv:astro-ph/0708.1168v2]

    Article  ADS  Google Scholar 

  40. Carroll S.M., Hoffman M.: Phys. Rev. D 68, 023509 (2003) [arXiv:astro-ph/0301273]

    Article  ADS  Google Scholar 

  41. Nesseris S., Perivolaropoulos L.: J. Cosmol. Astropart. Phys. 0701, 018 (2007) [arxiv:astro-ph/ 0610092v3]

    Article  MathSciNet  ADS  Google Scholar 

  42. Riess A.G. et al.: Astrophys. J. 607, 665–687 (2004) [arXiv:astro-ph/0402512]

    Article  ADS  Google Scholar 

  43. Astier P. et al.: Astron. Astrophys. 447, 31–48 (2006) [arXiv:astro-ph/0510447]

    Article  ADS  Google Scholar 

  44. Komatsu E. et al.: Astrophys. J. Suppl. Ser. 180, 330–376 (2009) [arXiv:astro-ph/0803.0547]

    Article  ADS  Google Scholar 

  45. MacTavish C.J. et al.: Astrophys. J. 647, 799 (2006) [arXiv:astro-ph/0507503v1]

    Article  ADS  Google Scholar 

  46. Eisenstein G. et al.: Astrophys. J. 633, 560–574 (2005) [arXiv:astro-ph/0501171]

    Article  ADS  Google Scholar 

  47. Zhao G.B. et al.: Phys. Lett. B 648, 8–13 (2007) [arXiv:astro-ph/0612728v2]

    Article  ADS  Google Scholar 

  48. Copeland E.J. et al.: Int. J. Mod. Phys. D 15, 1753–1936 (2006) [arXiv:hep-th/0603057v3]

    Article  MATH  MathSciNet  ADS  Google Scholar 

  49. Koivisto T., Mota, D.F.: arXiv:astro-ph/0801.3676v2 (2008)

  50. Koivisto T., Mota D.F.: Astrophys. J. 679, 1 (2008) [arXiv:astro-ph/0707.0279v3]

    Article  ADS  Google Scholar 

  51. Mota D.F. et al.: Mon. Notices Roy. Astron. Soc. 382, 793–800 (2007) [arXiv:astro-ph/0708.0830v2]

    Article  ADS  Google Scholar 

  52. Burdyuzha V., Vereshkov G.: Astrophys. Space Sci. 305, 235–239 (2006)

    Article  MATH  ADS  Google Scholar 

  53. Turner M., Huterer D.: J. Phys. Soc. Jpn. 76, 111015 (2007) [arXiv:astro-ph/0706.2186v2]

    Article  ADS  Google Scholar 

  54. Singh C.P., Kumar S.: Int. J. Mod. Phys. D 15, 419–438 (2006)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  55. Kumar S., Singh C.P.: Astrophys. Space Sci. 312, 57–62 (2007)

    Article  MATH  ADS  Google Scholar 

  56. Singh C.P.: Pramana J. Phys. 68, 707–720 (2007)

    Article  ADS  Google Scholar 

  57. Singh C.P. et al.: Astrophys. Space Sci. 315, 181–189 (2008)

    Article  ADS  Google Scholar 

  58. Berman M.S.: Nuovo Cimento B 74, 182–186 (1983)

    Article  ADS  Google Scholar 

  59. Berman M.S., Gomide F.M.: Gen. Relativ. Gravit. 20, 191–198 (1988)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Özgür Akarsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Akarsu, Ö., Kılınç, C.B. LRS Bianchi type I models with anisotropic dark energy and constant deceleration parameter. Gen Relativ Gravit 42, 119 (2010). https://doi.org/10.1007/s10714-009-0821-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-009-0821-y

Keywords

Navigation