Skip to main content
Log in

Phase transitions in geometrothermodynamics

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Using the formalism of geometrothermodynamics, we investigate the geometric properties of the equilibrium manifold for diverse thermodynamic systems. Starting from Legendre invariant metrics of the phase manifold, we derive thermodynamic metrics for the equilibrium manifold whose curvature becomes singular at those points where phase transitions of first and second order occur. We conclude that the thermodynamic curvature of the equilibrium manifold, as defined in geometrothermodynamics, can be used as a measure of thermodynamic interaction in diverse systems with two and three thermodynamic degrees of freedom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gibbs J.W.: The Collected Works, Vol. 1, Thermodynamics. Yale University Press, New Haven (1948)

    Google Scholar 

  2. Caratheodory C.: Untersuchungen über die Grundlagen der Thermodynamik. Math. Ann. 67, 355 (1909)

    Article  MathSciNet  Google Scholar 

  3. Callen H.B.: Thermodynamics and an Introduction to Thermostatics. Wiley, New York (1985)

    Google Scholar 

  4. Huang K.: Statistical Mechanics. Wiley, New York (1987)

    MATH  Google Scholar 

  5. Rao C.R.: Bull. Calcutta Math. Soc. 37, 81 (1945)

    MATH  MathSciNet  Google Scholar 

  6. Amari S.: Differential-Geometrical Methods in Statistics. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  7. Weinhold, F.: Metric geometry of equilibrium thermodynamics I, II, III, IV, V. J. Chem. Phys. 63:2479, 2484, 2488, 2496 (1975)

    Google Scholar 

  8. Weinhold F.: Metric geometry of equilibrium thermodynamics I, II, III, IV, V. J. Chem. Phys. 65, 558 (1976)

    Article  ADS  Google Scholar 

  9. Ruppeiner G.: Thermodynamics: a Riemannian geometric model. Phys. Rev. A 20, 1608 (1979)

    Article  ADS  Google Scholar 

  10. Ruppeiner G.: Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 67, 605 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ruppeiner G.: Riemannian geometry in thermodynamic fluctuation theory. Rev. Mod. Phys. 68, 313 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  12. Hermann R.: Geometry, Physics and Systems. Marcel Dekker, New York (1973)

    MATH  Google Scholar 

  13. Quevedo H.: Geometrothermodynamics. J. Math. Phys 48, 013506 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  14. Burke W.L.: Applied Differential Geometry. Cambridge University Press, Cambridge, UK (1987)

    Google Scholar 

  15. Arnold V.I.: Mathematical Methods of Classical Mechanics. Springer, New York (1980)

    Google Scholar 

  16. Davies P.C.W.: Thermodynamics of black holes. Rep. Prog. Phys. 41, 1313 (1978)

    Article  ADS  Google Scholar 

  17. Quevedo H.: Geometrothermodynamics of black holes. Gen. Relativ. Gravit. 40, 971 (2008)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  18. Álvarez J.L., Quevedo H., Sánchez A.: Unified geometric description of black hole thermodynamics. Phys. Rev. D 77, 084004 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  19. Quevedo H., Sánchez A.: Geometrothermodynamics of asymptotically anti-de Sitter black holes. JHEP 09, 034 (2008)

    Article  ADS  Google Scholar 

  20. Quevedo H., Sánchez A.: Geometric description of BTZ black holes thermodynamics. Phys. Rev. D 79, 024012 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  21. Quevedo, H., Taj, S.: Geometrothermodynamics of higher dimensional black holes in Einstein–Gauss–Bonnet theory (2009, in preparation)

  22. Akbar, M., Quevedo, H., Sánchez, A., Saifullah, K., Taj, S.: Thermodynamic geometry of charged rotating BTZ black holes (2009, in preparation)

  23. Åman J., Bengtsson I., Pidokrajt N.: Flat information geometries in black hole thermodynamics. Gen. Relativ. Gravit. 38, 1305 (2006)

    Article  MATH  ADS  Google Scholar 

  24. Cai R., Cho J.: Thermodynamic curvature of the BTZ black hole. Phys. Rev. D 60, 067502 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  25. Mirza B., Zamaninasab M.: Ruppeiner geometry of RN black holes: flat or curved? J. High Energy Phys. 0706, 059 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  26. Vázquez, A., Quevedo, H., Sánchez, A.: Thermodynamic systems as bosonic strings (2009); arXiv:hep-th/0805.4819

  27. Landau L.D., Lifshitz E.M.: Statistical Physics. Pergamon Press, London, UK (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernando Quevedo.

Additional information

H. Quevedo is on sabbatical leave from Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Quevedo, H., Sánchez, A., Taj, S. et al. Phase transitions in geometrothermodynamics. Gen Relativ Gravit 43, 1153–1165 (2011). https://doi.org/10.1007/s10714-010-0996-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-0996-2

Keywords

Navigation