Skip to main content
Log in

Gravitational wave detection with single-laser atom interferometers

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We present a new general design approach of a broad-band detector of gravitational radiation that relies on two atom interferometers separated by a distance L. In this scheme, only one arm and one laser will be used for operating the two atom interferometers. We consider atoms in the atom interferometers not only as perfect inertial reference sensors, but also as highly stable clocks. Atomic coherence is intrinsically stable and can be many orders of magnitude more stable than a laser. The unique one-laser configuration allows us to then apply time-delay interferometry to the responses of the two atom interferometers, thereby canceling the laser phase fluctuations while preserving the gravitational wave signal in the resulting data set. Our approach appears very promising. We plan to investigate further its practicality and detailed sensitivity analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Thorne, K.S.: In: Hawking, S.W., Israel, W. (eds.) 300 Years of Gravitation. Cambridge University Press, Cambridge (1987)

  2. Bender, P., Danzmann, K.: The LISA Study Team: Laser Interferometer Space Antenna for the Detection of Gravitational Waves, Pre-Phase A Report, MPQ 233. Max-Planck-Institüt für Quantenoptik, Garching (1998)

  3. Tinto M., Armstrong J.W.: Phys. Rev. D 59, 102003 (1999)

    Article  ADS  Google Scholar 

  4. LIGO Project: California Institute of Technology, Massachusetts Institute of Technology (USA). In: Proposal to the National Science Foundation, A Laser Interferometer Gravitational-Wave Observatory (LIGO), volumes 1 and 2, 1989 (unpublished)

  5. Weiss, R.: In: Ashby, N., Bartlett, D., Wyss, W. (eds.) Proceedings of the Twelfth International Conference on General Relativity and Gravitation, pp. 331. Cambridge University Press, Cambridge (1990)

  6. Drever, R.W.P.: In: Natalie, D., Tsvi, P. (eds.) Gravitational Radiation. North-Holland, Amsterdam (1982)

  7. Armstrong J.W.: Living Rev. Relativ. 9, 1 (2006)

    ADS  Google Scholar 

  8. Kasevich M., Chu S.: Phys. Rev. Lett. 67, 181 (1991)

    Article  ADS  Google Scholar 

  9. Chiao R.Y., Speliotopoulos A.D.: J. Mod. Opt. 51, 861 (2004)

    ADS  MATH  Google Scholar 

  10. Speliotopoulos A.D., Chiao R.Y.: Phys. Rev. D 69, 084013 (2004)

    Article  ADS  Google Scholar 

  11. Foffa S., Gasparini A., Papucci M., Sturani R.: Phys. Rev. D 73, 022001 (2006)

    Article  ADS  Google Scholar 

  12. Roura A., Brill D.R., Hu B.L., Misner C.W., Phillips W.D.: Phys. Rev. D 73, 084018 (2006)

    Article  ADS  Google Scholar 

  13. Delva P., Angonin M.C., Tourrenc P.: Phys. Lett. A 357, 249–254 (2006)

    Article  ADS  MATH  Google Scholar 

  14. Tino G.M., Vetrano F.: Class. Quantum Grav. 24, 2167–2178 (2007)

    Article  ADS  MATH  Google Scholar 

  15. Dimopoulos S., Graham P.W., Hogan J.M., Kasevich M.A., Rajendram S.: Phys. Rev. D 78, 122002 (2008)

    Article  ADS  Google Scholar 

  16. Tinto M., Dhurandhar S.V.: Living Rev. Relativ. 8, 4 (2005)

    ADS  Google Scholar 

  17. Rosenband T. et al.: Science 319, 1808 (2008)

    Article  ADS  Google Scholar 

  18. Madej, A.A., Bernard, J.E.: In: Luiten, A.N. (eds.): Frequency Measurement and Control, pp. 153. Springer, Berlin (2001)

  19. Yu N., Dehmelt H., Nagourney W.: Proc. Natl. Acad. Sci. 89, 7289 (1992)

    Article  ADS  Google Scholar 

  20. Dehmelt H., Yu N., Nagourney W.: Proc. Natl. Acad. Sci. 86, 3938 (1989)

    Article  ADS  Google Scholar 

  21. Ludlow A.D., Huang X., Notcutt M., Zanon-Willette T., Foreman S.M., Boyd M.M., Blatt S., Ye J.: Opt. Lett. 32, 641 (2007)

    Article  ADS  Google Scholar 

  22. Wilpers G., Oates C.W., Diddams S.A., Bartels A., Fortier T.M., Oskay W.H., Bergquist J.C., Jefferts S.R., Heavner T.P., Parker T.E., Hollberg L.: Metrologia 44, 146 (2007)

    Article  ADS  Google Scholar 

  23. http://www.virgo.infn.it

  24. Borde C.J., Salomon C., Avrillier S., Van Lerberhe A., Breant C., Bassi D., Scoles G.: Phys. Rev. A 30, 1836 (1984)

    Article  ADS  Google Scholar 

  25. Farrar T.C.: An Introduction to Pulse NMR Spectroscopy. Farragut Press, Chicago (1987)

    Google Scholar 

  26. Estabrook F.B., Wahlquist H.D.: Gen. Relativ. Gravit. 6, 439 (1975)

    Article  ADS  Google Scholar 

  27. Dimopoulos S., Graham P.W., Hogan J.M., Kasevich M.A.: Phys. Rev. D 78, 042003 (2008)

    Article  ADS  Google Scholar 

  28. Mueller H., Chiow S., Long Q., Herrmann S., Chu S.: Phys. Rev. Lett. 100, 180405 (2008)

    Article  ADS  Google Scholar 

  29. Mueller H., Chiow S., Herrmann S., Chu S.: Phys. Rev. Lett. 102, 240403 (2009)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nan Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, N., Tinto, M. Gravitational wave detection with single-laser atom interferometers. Gen Relativ Gravit 43, 1943–1952 (2011). https://doi.org/10.1007/s10714-010-1055-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-010-1055-8

Keywords

Navigation