Skip to main content
Log in

Conformal and projective structures in general relativity

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

It is proposed that compatible conformal and projective structures be taken as the basic space-time structures in general relativity, with the symmetry group restricted to unimodular diffeomorphisms. Models of classical massless fields, such as the Maxwell field, interact directly with the conformal structure; while classical bodies composed of massive particles, such as solids and fluids, interact directly with the projective structure. It is suggested that this difference is the classical limit of the respective quantum-gravitational interactions, which should reflect the differing approaches to the quantization of fields and particles when gravity is neglected. Models of general relativity based on compatible conformal and projective structures should be the basis for the exploration of ideal measurement procedures, both classical and quantum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Einstein A.: The Meaning of Relativity, 5th ed. Princeton University Press, Princeton (1955)

    MATH  Google Scholar 

  2. Stachel J. et al.: Structure, individuality and quantum gravity. In: Rickles, D. (eds) The Structural Foundations of Quantum Gravity, pp. 53–82. Clarendon Press, Oxford (2006)

    Chapter  Google Scholar 

  3. Stachel, J.: Projective and Conformal Structures in General Relativity. Loops ‘07, Morelia June 25–30, 2007. http://www.matmor.unam.mx/eventos/loops07/talks/PL6/Stachel.ppt

  4. Goldberg J.N.: Phys. Rev. 111, 315–320 (1958)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Stachel J.: A variational principle giving gravitational superpotentials, the affine connection, Riemann tensor, and the einstein field equations. Gen. Relativ. Gravit. 8, 705–712 (1977)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Kobayashi S.: Transformation Groups in Differential Geometry. Springer, Berlin (1972)

    MATH  Google Scholar 

  7. Coleman R.A., Korte H.: Spacetime G-Structures and their prolongations. J. Math. Phys. 22, 2598–2611 (1981)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Sanchez-Rodriguez, I.: Geometrical structures of space-time in General Relativity. Geometry and Physics: XVI International Fall Workshop. AIP Conference Proceedings, Vol. 1023, pp. 202–206 (2008)

  9. Sanchez-Rodriguez, I.: Structural approach to the geometry of gravity, Poster presented at the En-cuentros Relativistas Españoles-2008 (Spanish Relativity Meeting-2008), Salamanca (Spain), 15–19 september, 2008, http://www.ugr.es/~ignacios/PosterERE720.pdf

  10. Weyl, H.: Zur Infinitesimalgeometrie: Einordnung der konformen und der projektiven Auffassung, Nachrichten von der Köngl. Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, pp. 99–112 (1921)

  11. Schouten J.A.: Ricci-Calculus. Springer, Berlin (1954)

    MATH  Google Scholar 

  12. Crampin M., Pirani F.A.E.: Applicable Differential Geometry. Cambridge University Press, Cambridge (1986)

    MATH  Google Scholar 

  13. Ehlers J., Pirani F.A.E., Schild A.: The Geometry of Free Fall and Light Propagation. In: O’Raifeartaigh, L. (eds) General Relativity, Papers in Honor of J. L. Synge, pp. 63–84. Clarendon Press, Oxford (1972)

    Google Scholar 

  14. Partial Differential Equations of Hyperbolic Type. In: Iyagana, S., Kawada, Y. (eds.) Encyclopedic Dictionary of Mathematics, vol. 2, pp. 1005–1012. Cambridge, MA/London: MIT Press (1980)

  15. Hadamard J.: Lectures on Cauchy’s Problem in Linear Partial Differential Equations. Dover, New York (1952)

    MATH  Google Scholar 

  16. Hadamard J.: Leçons sur la propagation des ondes et les equations de l’hydrodynamique. Chelsea Pub. Co, New York (1949)

    Google Scholar 

  17. Hadamard J.: La Théorie des Equations aux Derivées Partielles. Editions Scientifique, Pekin (1964)

    MATH  Google Scholar 

  18. Arnold V.I.: Singularities of Caustics and Wave Fronts. Kluwer, Dordrecht (1990)

    Google Scholar 

  19. D’Inverno R.A., Stachel J.: Conformal two-structure as the gravitational degrees of freedom in general relativity. J. Math. Phys. 19, 2447–2460 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  20. Pirani F., Schild A.: Geometrical and physical interpretation of the Weyl conformal curvature tensor. Bulletin de l’Académie Polonaise des Sciences, Série des sciences math. astron. et physiques 9, 543–547 (1961)

    MathSciNet  MATH  Google Scholar 

  21. Ellis G.F.R., Nel D., Maartens R., Stoeger W.R., Whitman A.P.: Ideal observational astronomy. Phys. Rep. 124, 315–417 (1985)

    Article  MathSciNet  ADS  Google Scholar 

  22. Stachel J.: Bohr and the Photon. In: Myrvold, W., Christian, J. (eds) Quantum Reality, Relativistic Causality, and Closing the Epistemic Circle (Western Ontario Series in Philosophy of Science, Volume 73.), pp. 69–83. Springer, Dordrecht (2009)

    Chapter  Google Scholar 

  23. Thomas T.Y.: On the projective and equi-projective geometries of paths. Proc. Natl. Acad. Sci. 11, 198–203 (1925)

    ADS  Google Scholar 

  24. Anderson J.L., Finkelstein D.: Cosmological constant and fundamental length. Am. J. Phys. 39, 901–904 (1971)

    Article  ADS  Google Scholar 

  25. Finkelstein D.R., Galiautdinov A.A., Baugh J.E.: Unimodular relativity and cosmological constant. J. Math. Phys. 42, 340–346 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Bock, R.D.: Gravitation and Electromagnetism. Ph.D. Dissertation. Austin: University of Texas (2002). http://www.lib.utexas.edu/etd/d/2002/bockrd029/bockrd029.pdf

  27. Bock, R.D.: Local Scale Invariance and general Relativity. arXiv:0312024v2 [gr-qc]

  28. Thomas J.M.: Conformal invariants. Proc. Natl. Acad. Sci. 12, 389–393 (1926)

    Article  ADS  MATH  Google Scholar 

  29. Bradonjić, K., Stachel, J.: Unimodular conformal and projective relativity. (In preparation)

  30. Bohr, N., Rosenfeld, L.: Zur Frage der Messbarkeit der elektromagnetischen Feldgrössen. Mat-fys. Medd. Dan. Vid. Selsk 12 (1933), no. 8; English translation, On the Question of the Measurability of the Electromagnetic Field Quantities. In: Cohen, R.S., Stachel, J. (eds.) Selected Papers of Leon Rosenfeld, pp. 357–400. Dordrecht/Boston/London, D. Reidel (1978)

  31. Bergmann P.G., Smith G.: Measurability analysis for the linearized gravitational field. Gen. Relativ. Gravit. 14, 1131–1166 (1982)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Stachel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stachel, J. Conformal and projective structures in general relativity. Gen Relativ Gravit 43, 3399–3409 (2011). https://doi.org/10.1007/s10714-011-1243-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-011-1243-1

Keywords

Navigation