Skip to main content

Advertisement

Log in

An alternative f(R, T) gravity theory and the dark energy problem

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Recently, a generalized gravity theory was proposed by Harko et al. where the Lagrangian density is an arbitrary function of the Ricci scalar R and the trace of the stress-energy tensor T, known as F(R,T) gravity. In their derivation of the field equations, they have not considered conservation of the stress-energy tensor. In the present work, we have shown that a part of the arbitrary function f(R,T) can be determined if we take into account of the conservation of stress-energy tensor, although the form of the field equations remain similar. For homogeneous and isotropic model of the universe the field equations are solved and corresponding cosmological aspects has been discussed. Finally, we have studied the energy conditions in this modified gravity theory both generally and a particular case of perfect fluid with constant equation of state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. de Bernardis, P., et al.: Nature 404, 955 (2000)

    Article  ADS  Google Scholar 

  4. Perlmutter, S., et al.: Astrophys. J. 598, 102 (2003)

    Article  ADS  Google Scholar 

  5. Wetterich, C.: Nucl. Phys. B 302, 668 (1988)

    Article  ADS  Google Scholar 

  6. Ratra, B., Peebles, J.: Phys. Rev. D 37, 321 (1988)

    Article  Google Scholar 

  7. Caldwell, R.R.: Phys. Lett. B 545, 23 (2002)

    Article  ADS  Google Scholar 

  8. Nojiri, S., Odinstov, S.D.: Phys. Lett. B 562, 147 (2003)

    Article  ADS  MATH  Google Scholar 

  9. Nojiri, S., Odinstov, S.D.: Phys. Lett. B 565, 1 (2003)

    Article  ADS  MATH  Google Scholar 

  10. Chiba, T., Okabe, T., Yamaguchi, M.: Phys. Rev. D 62, 023511 (2000)

    Article  ADS  Google Scholar 

  11. Armendariz-Picon, C., Mukhanov, M., Steinhardt, P.J.: Phys. Rev. Lett. 85, 4438 (2000)

    Article  ADS  Google Scholar 

  12. Armendariz-Picon, C., Mukhanov, M., Steinhardt, P.J.: Phys. Rev. D 63, 103510 (2001)

    Article  ADS  Google Scholar 

  13. Sen, A.: J. High Energy Phys. 04, 048 (2002)

    Article  ADS  Google Scholar 

  14. Padmanabhan, T., Chaudhury, T.R.: Phys. Rev. D 66, 081301 (2002)

    Article  ADS  Google Scholar 

  15. Elizalde, E., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 70, 043539 (2004)

    Article  ADS  Google Scholar 

  16. Anisimov, A., Babichev, E., Vikman, A.: J.Cosmol. Astropart. Phys. 06, 006 (2005)

    Article  ADS  Google Scholar 

  17. Kamenshchik, A., Moschella, U., Pasquier, V.: Phys. Lett. B 511, 265 (2001)

    Article  ADS  MATH  Google Scholar 

  18. Bento, M.C., Bertolami, O., Sen, A.A.: Phys. Rev. D 66, 043507 (2002)

    Article  ADS  Google Scholar 

  19. Nojiri, S. ,Odintsov, S.D.: arXiv:1011.0544 (Phys.Rep., to be published)

  20. Carroll, S.M., Duvvuri, V., Trodden, M., Turner, M.S.: Phys. Rev. D 70, 043528 (2004)

    Article  ADS  Google Scholar 

  21. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 657, 238 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  22. Nojiri, S., Odintsov, S.D.: Phys. Rev. D 77, 026007 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. Nojiri, S., Odintsov, S.D.: arXiv:1008.4275 [Prog. Theor. Phys. Suppl. (to be published)]

  24. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Sebastiani, L., Zerbini, S.: Phys. Rev. D 77, 046009 (2008)

    Article  ADS  Google Scholar 

  25. Cognola, G., Elizalde, E., Nojiri, S., Odintsov, S.D., Sebastiani, L., Zerbini, S.: Phys. Rev. D 83, 086006 (2011)

    Article  ADS  Google Scholar 

  26. Capozziello, S., Cardone, V.F., Troisi, A.: J. Cosmol. Astropart. Phys. 08, 001 (2006)

    Article  ADS  Google Scholar 

  27. Capozziello, S., Cardone, V.F., Troisi, A.: Mon. Not. R. Astron. Soc. 375, 1423 (2007)

    Article  ADS  Google Scholar 

  28. Borowiec, A., Godlowski, W., Szydlowski, M.: Int. J. Geom. Methods Mod. Phys. 4, 183 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  29. Martins, C.F., Salucci, P.: Mon. Not. R. Astron. Soc. 381, 1103 (2007)

    Article  ADS  Google Scholar 

  30. Boehmer, C.G., Harko, T., Lobo, F.S.N.: Astropart. Phys. 29, 386 (2008)

    Article  ADS  Google Scholar 

  31. Boehmer, C.G., Harko, T., Lobo, F.S.N.: J. Cosmol. Astropart. Phys. 03, 024 (2008)

    Article  ADS  Google Scholar 

  32. Sotiriou, T.P., Faraoni, V.: Rev. Mod. Phys. 82, 451 (2010)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Lobo, F.S.N.: arxiv:0807.1640

  34. Capozziello, S., Faraoni, V.: Beyond Einstein Gravity. Springer, NY (2010)

    Google Scholar 

  35. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: Phys. Rev. D 84, 024020 (2011)

    Article  ADS  Google Scholar 

  36. Houndio, M.J.S.: Int. J. Mod. Phys. D (to appear). arXiv:1107.3887

  37. Sharif, M., Zubair, M.: arXiv:1204.0848(gr-qc)

  38. Azizi, T.: arXiv:1205.6957(gr-qc)

  39. Landau, L.D., Lifshitz, E.M.: The Classical Theory of Fields. Butterworth-Heinemann, Oxford (1998)

    Google Scholar 

  40. Koivisto, T.: Class. Quantum Grav. 23, 4289 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Hawing, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-time. Cambridge University Press, Cambridge (1973)

    Book  Google Scholar 

  42. García, N.M., Harko, T., Lobo, F.S.N., Mimoso, J.P.: Phys. Rev. D 83, 104032 (2011)

    Article  ADS  Google Scholar 

  43. Visser, M.: Lorentzian Wormholes: From Einstein to Hawking. Springer, Berlin (1995)

    Google Scholar 

  44. Will, C.M.: Liv. Rev. Rel. 9, 3 (2006)

    Google Scholar 

  45. Aviles, A., Bravetti, A., Capozziello, S., Luongo, O.: Phys. Rev. D 87, 044012 (2013)

    Article  ADS  Google Scholar 

  46. Weinberg, S.: Cosmology. Oxford University Press, NY (2008)

    MATH  Google Scholar 

  47. Alam, U., Sahni, V., Saini, T.D., Starobinsky, A.A.: Mon. Not. R. Astron. Soc. 344, 1057 (2003)

    Article  ADS  Google Scholar 

  48. Harko, T., Koivisto, T.S., Lobo, F.N.S., Olmo, G.J.: Phys. Rev. D 85, 084016 (2012)

    Article  ADS  Google Scholar 

  49. Capozziello, S., Harko, T., Koivisto, T.S., Lobo, F.N.S., Olmo, G.J.: J. Cosmol. Astropart. Phys. 04, 011 (2013)

    Article  ADS  Google Scholar 

  50. Capozziello, S., Laurentis, M.D.: Phys. Rep. 509, 167 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  51. Birrel, N.D., Davies, P.C.W.: Quantum Fields in Curved Spacetime. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  52. Alves, M., Neto, J.B.: Braz. J. Phys. 34, 531 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work is done during a visit to IUCAA, Pune (India) under associateship programme. The author is thankful to IUCAA for warm hospitality and facilities at the library. The author also acknowledges the DRS programme of UGC, Govt. of India, in the department of Mathematics, Jadavpur University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subenoy Chakraborty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S. An alternative f(R, T) gravity theory and the dark energy problem. Gen Relativ Gravit 45, 2039–2052 (2013). https://doi.org/10.1007/s10714-013-1577-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10714-013-1577-y

Keywords

Navigation