Skip to main content
Log in

Gravitational lensing and frame dragging of light in the Kerr–Newman and the Kerr–Newman (anti) de Sitter black hole spacetimes

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The null geodesics that describe photon orbits in the spacetime of a rotating electrically charged black hole (Kerr–Newman) are solved exactly including the contribution from the cosmological constant. We derive elegant closed form solutions for relativistic observables such as the deflection angle and frame dragging effect that a light ray experiences in the gravitational fields (i) of a Kerr–Newman black hole and (ii) of a Kerr–Newman–de Sitter black hole. We then solve the more involved problem of treating a Kerr–Newman black hole as a gravitational lens, i.e. a KN black hole along with a static source of light and a static observer both located far away but otherwise at arbitrary positions in space. For this model, we derive the analytic solutions of the lens equations in terms of Appell and Lauricella hypergeometric functions and the Weierstraßmodular form. The exact solutions derived for null, spherical polar and non-polar orbits, are applied for the calculation of frame dragging for the orbit of a photon around the galactic centre, assuming that the latter is a Kerr–Newman black hole. We also apply the exact solution for the deflection angle of an equatorial light ray in the gravitational field of a Kerr–Newman black hole for the calculation of bending of light from the gravitational field of the galactic centre for various values of the Kerr parameter, electric charge and impact factor. In addition, we derive expressions for the Maxwell tensor components for a zero-angular-momentum-observer (ZAMO) in the Kerr–Newman–de Sitter spacetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Notes

  1. By solving the Hamilton–Jacobi equation by the method of separation of variables.

  2. Curved spacetime geometries surrounding non-spinning charged bodies or black holes.

  3. Explicitly Eq. (27) reads: \(\tilde{\xi }=\wp (-\phi +\wp ^{-1}(\tilde{\xi }_0))\), where \(\tilde{\xi }_0\) is the initial value of \(\tilde{\xi }\).

  4. We also mention the following integral identity in the definition of the real half-period \(\omega \): \(\omega =\int _{e_3}^{e_2}\frac{\mathrm{d}x}{\sqrt{4x^3-g_2^{\prime \prime }x-g_3^{\prime \prime }}}=\int _{e_1}^{+\infty }\frac{\mathrm{d}x}{\sqrt{4x^3-g_2^{\prime \prime }x-g_3^{\prime \prime }}}\), when all the branch points are real and the lattice rectangular [37]. A similar integral identity holds in the definition of \(\omega ^{\prime }\).

  5. Equation (58) is easily proved by using the integral representation of Appell’s function \(F_1\) and performing the change of variables: \(u=1-v\) to the original variable of integration \(u\).

  6. See Appendix 2 for the integral representation that the Appell–Lauricella hypergeometric function admits. We also have the correspondence \(\alpha _{\mu +1}=\alpha ,\alpha _{\mu +2}=\beta ,\alpha _{\mu -1}=r^{\prime }_{+}=\alpha _{\mu -2},\alpha _{\mu -3}=\gamma ,\alpha _{\mu } =\delta \).

  7. In the usual units: \(r_{\pm }=\frac{GM_\mathrm{BH}}{c^2}\pm \sqrt{\left( \frac{GM_\mathrm{BH}}{c^2}\right) ^2-\left( \frac{Ge^2}{c^4}+a^2\right) }\).

  8. In this regard, we also mention that the author in [30], under the assumption that the curved geometry surrounding the massive object in the Galactic Centre is a Reissner–Nordström (RN) spacetime, obtained an upper bound of \(e\lesssim 3.6\times 10^{27}\)C. This upper bound does not distinguish yet between a RN black hole scenario and a RN naked singularity scenario.

  9. The parameters are consistent with data for the periastron, apoastron distances and orbital period for the stars \(S2,S14\) [40] (see also [41]).

  10. Such an analysis will be a subject of a future publication.

  11. We also assume without loss of generality that \(\phi _O=0\).

  12. We note at this point that the shadow of the KN spacetime has also been studied in [44]. However, the author of [44] did not actually solved the KN lens equations and he also considered cases which violate (9).

  13. In establishing (134) we used the fact that the sum of the second and third term on the right hand side of Eq. (132) can be written as: \(\int _{\xi _S}^{\xi _m}+(1-\sigma _S)\int _{\xi _0}^{\xi _S}\), where \((\xi _m,\xi _0)\) are extremal values of \(\xi \); thus, one can separate from it the expression \(\sigma _S\int _{\xi _S}^{\infty }\propto \sigma _S \wp ^{-1}(\xi )\).

References

  1. Newman, E.T., Couch, E., Chinnapared, K., Exton, A., Prakash, A., Torrence, R.: Metric of a rotating, charged mass. J. Math. Phys. 6, 918 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  2. Ohanian, H., Ruffini, R.: Gravitation and Spacetime. Norton, New York (1994)

    MATH  Google Scholar 

  3. Kerr, R.P.: Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Res. Lett. 11, 237 (1963)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  5. Filippenko, A.V., et al.: Astron. J. 116, 1009

  6. Kraniotis, G.V., Whitehouse, S.B.: General relativity, the cosmological constant and modular forms. Class. Quantum Gravit. 19, 5073–5100 (2002)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Kraniotis, G.V., Whitehouse, S.B.: Compact calculation of the perihelion precession of Mercury in general relativity the cosmological constant and Jacobi’s inversion problem. Class. Quantum Gravit. 20, 4817–4835 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  8. Kraniotis, G.V.: Precise analytic treatment of Kerr and Kerr-(anti) de Sitter black holes as gravitational lenses. Class. Quantum Gravit. 28, 085021 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  9. Hackmann, E., Lämmerzahl, C.: Geodesic equation in Schwarzschild-(anti-)de Sitter space–times: analytical solutions and applications. Phys. Rev. D 78, 024035 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  10. Stuchlík, Z., Schee, J.: Comparison of general relativistic and pseudo-Newtonian description of Magellanic clouds motion in the field of Milky Way. Int. J. Mod. Phys. D 21, 1250031 (2012)

    Article  ADS  Google Scholar 

  11. Stuchlík, Z., Schee, J.: Influence of the cosmological constant on the motion of Magellanic Clouds in the gravitational field of Milky Way. JCAP 9, 018 (2011)

    Article  ADS  Google Scholar 

  12. Sultana, J.: Contribution of the cosmological constant to the bending of light in Kerr–de Sitter spacetime. Phys. Rev. D 88, 042003 (2013)

    Article  ADS  Google Scholar 

  13. Stuchlík, Z., Bao, G., Østgaard, E., Hledík, S.: Kerr–Newman–de Sitter black holes with a restricted repulsive barrier of equatorial photon motion. Phys. Rev. D. 58, 084003 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  14. Carter, B.: In: De Witt, C., De Witt, B.S. (eds.) Black Holes. Gordon and Breach, New York (1973)

  15. Griffiths, J.B., Podolský, Jiří: Exact Spacetimes in Einstein’s General Relativity, Cambridge Monographs in Mathematical Physics. Cambirdge University Press, Cambirdge (2009)

    Book  Google Scholar 

  16. Stuchlík, Z.: The motion of test particles in black-hole backgrounds with non-zero cosmological constant. Bull. Astron. Inst. Chechoslovakia 34, 129–149 (1983)

    ADS  MATH  Google Scholar 

  17. Bardeen, J.M., Press, W.H., Teukolsky, S.A.: Rotating black holes: locally nonrotating frames, energy extraction, and scalar synchrotron radiation. Astrophys. J. 178, 347–369 (1972)

    Article  ADS  Google Scholar 

  18. Carter, B.: Global structure of the Kerr family of gravitational fields. Phys. Rev. 174, 1559–1571 (1968)

    Article  ADS  MATH  Google Scholar 

  19. Kraniotis, G.V.: Precise relativistic orbits in Kerr and Kerr-(anti) de Sitter spacetimes. Class. Quantum Gravit. 21, 4743–4769 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  20. Calvani, M., Turolla, R.: Complete description of photon trajectories in the Kerr–Newman space–time. J. Phys. A. Math. Gen. 14, 1931–1942 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  21. Stuchlík, Z., Hledík, S.: Equatorial photon motion in the Kerr–Newman spacetimes with a non-zero cosmological constant. Class. Quantum Gravit. 17, 4541–4576 (2000)

    Article  ADS  MATH  Google Scholar 

  22. Johnston, M., Ruffini, R.: Generalized Wilkins effect and selected orbits in a Kerr–Newman geometry. Phys. Rev. D. 10, 2324–2329 (1974)

    Article  ADS  Google Scholar 

  23. Hackmann, E., Xu, H.: Charged particle motion in Kerr–Newmann spacetimes. Phys. Rev. D. 87, 124030 (2013)

    Article  ADS  Google Scholar 

  24. Pugliese, D., Quevedo, H., Ruffini, R.: Equatorial circular orbits of neutral test particles in the Kerr–Newman spacetime. Phys. Rev. D 88, 024042 (2013)

    Article  ADS  Google Scholar 

  25. Kraniotis, G.V.: Frame dragging and bending of light in Kerr and Kerr-(anti) de Sitter spacetimes. Class. Quantum Gravit. 22, 4391–4424 (2005)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  26. Ghez, A.M., et al.: Measuring distance and properties of the Milky Way’s central supermassive black hole with stellar orbits. Astrophys. J. 689, 1044 (2008). ( arXiv:0808.2870)

  27. Genzel, R., et al.: Rev. Mod. Phys. 82, 3121–3195 (2010)

    Article  ADS  Google Scholar 

  28. Ray, S., Espinoza, A.L., Malheiro, M.: Electrically charged compact stars and formation of charged black holes. Phys. Rev. D. 68, 084004 (2003)

    Article  ADS  Google Scholar 

  29. Mosquera Cuesta, H.J., Penna-Firme, A., Pérez-Lorenzana, A.: Charge asymmetry in the brane world and the formation of charged black holes. Phys. Rev. D 67, 087702 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  30. Iorio, L.: Constraining the electric charges of some astronomical bodies in Reissner–Nordström spacetimes and generic \(r^{-2}-\)type power-law potentials from orbital motions. Gen Relativ. Gravit. 44, 1753–1767 (2012)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  31. Kuc̆áková, H., Slaný, P., Stuchlík, Z.: Toroidal configurations of perfect fluid in the Reissner–Nordström-(anti-)de Sitter spacetimes. JCAP 01, 033 (2011)

  32. Olivares, M., Saavedra, J., Leiva, C., Villanueva, J.R.: Motion of charged particles on the Reissner–Nordström–(anti-)de Sitter spacetime. Modern Phys. Lett. A 26, 2923–2950 (2011)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  33. Lauricella, G.: Sulle funzioni ipergeometriche a più variabili. Rend. Circ. Mat. Palermo 7, 111–158 (1893)

    Article  MATH  Google Scholar 

  34. Appell, P.: Sur les fonctions hypergéometriques de deux variables. J. Math. Pure Appl. 8, 173–216 (1882)

    MATH  Google Scholar 

  35. Stoghianidis, E., Tsoubelis, D.: Polar orbits in the Kerr space–time. Gen. Relativ. Gravit. 19, 1235–1249 (1987)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  36. Whittaker, E.: A Treatise on the Analytical dynamics of Particles and Rigid bodies. Cambridge University Press, Cambridge (1947)

    Google Scholar 

  37. du Val, P.: Elliptic Functions and Elliptic Curves (London Mathematical Society). CUP, Cambridge (1973)

    Book  Google Scholar 

  38. Genzel, R., et al.: Near infrared flares from accreting gas around the supermassive black hole at the Galactic centre. Nature 425, 934–7 (2003)

    Article  ADS  Google Scholar 

  39. Aschenbach, B., Grosso, N., Porquet, D., Predehl, P.: X-ray flares reveal mass and angular momentum of the Galactic centre black hole. Astron. Astrophys. 417, 71–8 (2004). http://arxiv.org/abs/astro-ph/0401589astro-ph/0401589

  40. Eisenhauer, F., et al.: Sinfoni in the galactic centre: young stars and infrared flares in the central light-month. Astrophys. J. 628, 246–259 (2005)

    Article  ADS  Google Scholar 

  41. Kraniotis, G.V.: Periapsis and gravitomagnetic precessions of stellar orbits in Kerr and Kerr–de Sitter black hole spacetimes. Class. Quantum Gravit. 24, 1775–1808 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  42. Meyer, L., et al.: The shortest-known-period star orbiting our Galaxy’s supermassive black hole. Science 338, 84 (2012)

    Article  ADS  Google Scholar 

  43. Kraniotis, G. V.: Work in Progress

  44. de Vries, A.: Class. Quantum Gravit. 17, 123–144 (2000)

    Article  ADS  MATH  Google Scholar 

  45. Punsly, B.: High-energy gamma-ray emission from galactic Kerr–Newman black holes. I. The central engine. Astrophys. J. 498, 640–659 (1998)

    Article  ADS  Google Scholar 

  46. Ruderman, R.A., Sutherland, P.G.: Astrophys. J. 196, 51 (1975)

    Article  ADS  Google Scholar 

  47. Cherubini, C., Geralico, A., Rueda, J.A., Ruffini, R.: \(e^{-}-e^{+}\) pair creation by vacuum polarization around electromagnetic black holes. Phys. Rev. D. 79, 124002 (2009)

    Article  ADS  Google Scholar 

  48. Greiner, W., Schramm, S.: Resource letter QED-1: the QED vacuum. Am. J. Phys. 76, 509–518 (2008)

    Article  ADS  Google Scholar 

  49. MacKean, H., Moll, V.: Elliptic Curves. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  50. Thorne, K., Price, R., Macdonald, D.: Black Holes: The Membrane Paradigm. Yale University Press, New Haven (1986)

    Google Scholar 

  51. Bic̆ak, J., Stuchlík, Z., Balek, V.: The motion of charged particles in the field of rotating charged black holes and naked singularities. Bull. Astron. Inst. Chechoslovakia 40, 65–92 (1989)

    ADS  Google Scholar 

Download references

Acknowledgments

I thank my family for support, Zdenĕk Stuchlík, G. Leontaris and M. Stamatis for discussions. I am grateful to the referees for the careful reading of the manuscript and their very constructive comments and suggestions that helped improve the presentation of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. V. Kraniotis.

Appendices

Appendix 1: The roots of the quartic in terms of Weierstraßfunctions

We are going to use the addition theorem for the Weierstraßelliptic function to express the roots of the quartic \(P_{4}(x)=x^{4}+ax^{2}+bx+c\in \mathbb {C} [x]\) in terms of the Weierstraßfunctions following [49]. We first write \(x\) for a point of the cover \(\mathbb {C}\) and \(\mathfrak {p}=(\mathbf{x},\mathbf{y})\) for the corresponding point of the cubic determined by \(\mathbf{x}=\wp (x)\) and \(\mathbf{y} ={\wp }^{\prime }(x)\). Then we study the intersections of the cubic \(\mathbf{y}^{2}=4\mathbf{x}^{3}-g_{2}\mathbf{x}-g_{3}\) and the line \(\mathbf{y}=a\mathbf{x}+b:\, \mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}\) are the roots of

$$\begin{aligned} F(\mathbf{x})&=4 \mathbf{x}^{3}-g_{2}\mathbf{x}-g_{3}-(a\mathbf{x}+b)^{2}\nonumber \\&=4(\mathbf{x}-\mathbf{x}_{1})(\mathbf{x}-\mathbf{x}_{2})(\mathbf{x}-\mathbf{x}_{3}) \end{aligned}$$
(138)

so

$$\begin{aligned} 4(\mathbf{x}_{1}-\mathbf{x}_{2})(\mathbf{x}_{1}-\mathbf{x}_{3})&= F^{\prime }(\mathbf{x}_{1})=12\mathbf{x}_{1}^{2}-g_{2}-2a(a\mathbf{x}_{1}+b)\nonumber \\&=12\mathbf{x}_{1}^{2}-g_{2}-2a\mathbf{y}_{1}. \end{aligned}$$
(139)

and

$$\begin{aligned} (\mathbf{x}_{2}-\mathbf{x}_{1})+(\mathbf{x}_{3}-\mathbf{x}_{1})=\mathbf{x}_{1}+\mathbf{x}_{2}+\mathbf{x}_{3}-3\mathbf{x}_{1}=\frac{a^{2}}{4}-3\mathbf{x}_{1}. \end{aligned}$$
(140)

We note that \(a\) is the slope of the line, so for distinct \(\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3}\) we have

$$\begin{aligned} a=\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{\mathbf{y}_{3}-\mathbf{y}_{2}}{\mathbf{x}_{3}-\mathbf{x}_{2}}=\frac{\mathbf{y}_{1}-\mathbf{y}_{3}}{\mathbf{x}_{1}-\mathbf{x}_{3}}. \end{aligned}$$
(141)

Now

$$\begin{aligned}&(140)^{2}-(139)\nonumber \\&=(\mathbf{x}_{2}+\mathbf{x}_{3}-2\mathbf{x}_{1})^{2}-4\mathbf{x}_{1}^{2}+4\mathbf{x}_{1}\mathbf{x}_{3}+4\mathbf{x}_{1}\mathbf{x}_{2}-4\mathbf{x}_{2}\mathbf{x}_{3}\nonumber \\&=(\mathbf{x}_{2}-\mathbf{x}_{3})^{2}=\left( \frac{a^{2}}{4}-3\mathbf{x}_{1}\right) ^{2}-12 \mathbf{x}_{1}^{2}+g_{2}+2a\mathbf{y}_{1}\nonumber \\&=\left( \frac{a}{2}\right) ^{4}-6\mathbf{x}_{1}\left( \frac{a}{2}\right) ^{2}+4\mathbf{y}_{1}\left( \frac{a}{2}\right) -3\mathbf{x}_{1}^{2}+g_{2}. \end{aligned}$$
(142)

Thus

$$\begin{aligned} X&= \frac{a}{2}=\frac{1}{2}\frac{\mathbf{y}_{2}-\mathbf{y}_{1}}{\mathbf{x}_{2}-\mathbf{x}_{1}}=\frac{1}{2}\frac{\wp ^{\prime }(x_{2})-\wp ^{\prime }(x_{1})}{\wp (x_{2} )-\wp (x_{1})}, \end{aligned}$$
(143)
$$\begin{aligned} Y&= \mathbf{x}_{3}-\mathbf{x}_{2}=\wp (-x_1-x_2)-\wp (x_2)=\wp (x_{1}+x_{2})-\wp (x_{2})\Rightarrow \end{aligned}$$
(144)
$$\begin{aligned} Y^{2}&= X^{4}-6\wp (x_{1})X^{2}+4\wp ^{\prime }(x_{1})X-3\wp ^{2}(x_{1})+g_{2}\equiv P_{4}(X). \end{aligned}$$
(145)

In the second equality of (145) we used the addition theorem \(x_1+x_2=-x_3\) in \(\mathbb {C}/\mathbb {L}\), \(\mathbb {L}\) the period lattice, and the fact that the Weierstraßfunction is even. For fixed \(x_{1},\) and variable \(x_{2},\) \(P_{4}(X)=0\) only if \(Y=0\). This occurs for \(x_{2}=-\frac{x_{1}}{2}\) to which may be added one of the three half-periods producing four roots of \(P_{4}(x)=0\) and these must be distinct, see Eqs. (86)–(89).

Appendix 2: Lauricella’s multivariable hypergeometric function \(F_D\)

In this Appendix 2, we define Lauricella’s 4th hypergeometric function of \(m\)-variables and its integral representation:

$$\begin{aligned} \boxed {\displaystyle F_D(\alpha ,\varvec{\beta },\gamma ,\mathbf{z})= \sum _{n_1,n_2,\ldots ,n_m=0}^{\infty }\frac{(\alpha )_{n_1+\cdots n_m}(\beta _1)_{n_1} \cdots (\beta _m)_{n_m}}{(\gamma )_{n_1+\cdots +n_m}(1)_{n_1}\cdots (1)_{n_m}} z_1^{n_1}\cdots z_m^{n_m}} \end{aligned}$$
(146)

where

$$\begin{aligned} \mathbf {z}&= (z_{1},\ldots ,z_{m}), \nonumber \\ \varvec{\beta }&= (\beta _{1},\ldots ,\beta _{m}). \end{aligned}$$
(147)

The Pochhammer symbol \(\boxed {\displaystyle (\alpha )_m=(\alpha ,m)}\) is defined by

$$\begin{aligned} (\alpha )_{m}=\frac{{\varGamma } (\alpha +m)}{{\varGamma } (\alpha )}=\left\{ \begin{array}{ccc} 1, &{} \mathrm{if} &{} m=0 \\ \alpha (\alpha +1)\cdots (\alpha +m-1) &{} \mathrm{if} &{} m=1,2,3 \end{array} \right. \end{aligned}$$
(148)

With the notations \(\mathbf {z}^\mathbf{n}:=z_1^{n_1}\cdots z_m^{n_m},(\varvec{\beta })_{\mathbf {n}}:=(\beta _1)_{n_1}\cdots (\beta _m)_{n_m}, \mathbf {n!}=n_1!\cdots n_m!, |\mathbf {n}|:=~n_1+\cdots +n_m\) for \(m\)-tuples of numbers in (147) and of non-negative integers \(\mathbf {n}=(n_1,\ldots n_m)\) the Lauricella series \(F_D\) in compact form is

$$\begin{aligned} F_D(\alpha ,\varvec{\beta },\gamma ,\mathbf{z}):=\sum _{\mathbf {n}}\frac{ (\alpha )_{|\mathbf {n}|}(\varvec{\beta })_{\mathbf {n}}}{(\gamma )_{|\mathbf {n}|}\mathbf {n!}}\mathbf {z}^\mathbf{n} \end{aligned}$$
(149)

The series admits the following integral representation:

$$\begin{aligned} \boxed {\displaystyle F_D(\alpha ,\varvec{\beta },\gamma ,\mathbf{z})= \frac{{\varGamma }(\gamma )}{{\varGamma }(\alpha ){\varGamma }(\gamma -\alpha )} \int _0^1 t^{\alpha -1}(1-t)^{\gamma -\alpha -1}(1-z_1 t)^{-\beta _1}\cdots (1-z_m t)^{-\beta _m} \mathrm{d}t} \end{aligned}$$
(150)

which is valid for \(\boxed {\displaystyle \mathrm{Re}(\alpha )>0,\;\mathrm{Re}(\gamma -\alpha )>0.}\). It converges absolutely inside the m-dimensional cuboid:

$$\begin{aligned} |z_{j}|<1,(j=1,\ldots ,m). \end{aligned}$$
(151)

For \(m=2\,F_D\) in the notation of Appell becomes the two variable hypergeometric function \(F_1(\alpha ,\beta ,\beta ^{\prime },\gamma ,x,y)\) with integral representation:

$$\begin{aligned} \int _0^1 \!u^{\alpha -1}(1-u)^{\gamma -\alpha -1}(1-u x)^{-\beta }(1-u y)^{-\beta ^{\prime }}\mathrm{d}u\!=\!\frac{{\varGamma }(\alpha ){\varGamma }(\gamma \!-\!\alpha )}{{\varGamma }(\gamma )} F_1(\alpha ,\beta ,\beta ^{\prime },\gamma ,x,y) \end{aligned}$$
(152)

Appendix 3: Calculation of the Maxwell tensor components in the ZAMO frame for the KNdS spacetime

The ZAMO basis vectors are determined by the transformation

$$\begin{aligned}&\hat{e}_0=^|g_{tt}-\Omega ^2 g_{\phi \phi }|^{-1/2}\frac{\partial }{\partial t}+\Omega |g_{tt}-\Omega ^2 g_{\phi \phi }|^{-1/2}\frac{\partial }{\partial \phi }, \end{aligned}$$
(153)
$$\begin{aligned}&\hat{e}_{\phi }=\frac{1}{\sqrt{g_{\phi \phi }}}\frac{\partial }{\partial \phi }, \end{aligned}$$
(154)
$$\begin{aligned}&\hat{e}_r=\left( \frac{{\varDelta }_r^{KN}}{\rho ^2}\right) ^{1/2}\frac{\partial }{\partial r}, \end{aligned}$$
(155)
$$\begin{aligned}&\hat{e}_{\theta }=\left( \frac{{\varDelta }_{\theta }}{\rho ^2}\right) ^{1/2}\frac{\partial }{\partial \theta }, \end{aligned}$$
(156)

where the angular velocity \(\Omega \) is given in the KNdS case by the expression:

$$\begin{aligned} \Omega =\frac{-ac \sin ^2\theta [{\varDelta }^{KN}_r-{\varDelta }_{\theta }(r^2+a^2)]}{{\varXi }^2 \rho ^2 g_{\phi \phi }}=\frac{-ac [{\varDelta }^{KN}_r-{\varDelta }_{\theta }(r^2+a^2)]}{({\varDelta }_{\theta }(r^2+a^2)^2-a^2\sin ^2\theta {\varDelta }_{r}^{KN})}\nonumber \\ \end{aligned}$$
(157)

and the quantity \(g_{tt}g_{\phi \phi }-g^2_{\phi t}=\frac{-c^2 {\varDelta }_r^{KN}{\varDelta }_{\theta }\sin ^2\theta }{{\varXi }^4}\). In addition, we compute for the lapse function \(\alpha _{ZAMO}\):

$$\begin{aligned} \boxed {\displaystyle \alpha _{ZAMO}:=|g_{tt}-\Omega ^2 g_{\phi \phi }|^{1/2}=\frac{c({\varDelta }_r^{KN})^{1/2}{\varDelta }_{\theta }^{1/2}\sin \theta }{{\varXi }^2 \sqrt{g_{\phi \phi }}}} \end{aligned}$$
(158)

Equation (158), reduces correctly, assuming \({\varLambda }=0\), to the lapse function derived in [50].

Now our analytic calculation for the electric (\(\varvec{E}\)) and magnetic fields (\(\varvec{B}\)) in the presence of the cosmological constant \({\varLambda }\) in the ZAMO frame yields:

$$\begin{aligned}&\boxed {\displaystyle E^{r}=\frac{(r^2+a^2)e[-r^2+a^2 \cos ^2\theta ]{\varDelta }_{\theta }^{1/2}}{\sqrt{(r^2+a^2)^2 {\varDelta }_{\theta }-a^2\sin ^2\theta {\varDelta }_r^{KN}}\rho ^4},} \end{aligned}$$
(159)
$$\begin{aligned}&\boxed { \displaystyle E^{\theta }=\frac{-2era^2 ({\varDelta }_r^{KN})^{1/2}\cos \theta \sin \theta }{\rho ^4 \sqrt{(r^2+a^2)^2 {\varDelta }_{\theta }-a^2\sin ^2\theta {\varDelta }_r^{KN}}},} \end{aligned}$$
(160)
$$\begin{aligned}&\boxed {\displaystyle B^r=\frac{2era (r^2+a^2)\cos \theta {\varDelta }_{\theta }^{1/2}}{\rho ^4 \sqrt{(r^2+a^2)^2 {\varDelta }_{\theta }-a^2\sin ^2\theta {\varDelta }_r^{KN}}},} \end{aligned}$$
(161)
$$\begin{aligned}&\boxed { \displaystyle B^{\theta }=\frac{-({\varDelta }_r^{KN})^{1/2}a\sin \theta e[-r^2+a^2\cos ^2\theta ]}{\rho ^4 \sqrt{(r^2+a^2)^2 {\varDelta }_{\theta }-a^2\sin ^2\theta {\varDelta }_r^{KN}}}.} \end{aligned}$$
(162)

Also it holds:

$$\begin{aligned} E^{\phi }=B^{\phi }=0 \end{aligned}$$
(163)

To the best of our knowledge Eqs. (159)–(162) represent the first calculation of the Maxwell tensor components in the ZAMO frame for the case of the Kerr–Newman–de Sitter spacetime. Our solutions for the electric and magnetic fields, for zero cosmological constant, reduce correctly to the corresponding expressions for the Kerr–Newman spacetime and LNRF observers derived in [51].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kraniotis, G.V. Gravitational lensing and frame dragging of light in the Kerr–Newman and the Kerr–Newman (anti) de Sitter black hole spacetimes. Gen Relativ Gravit 46, 1818 (2014). https://doi.org/10.1007/s10714-014-1818-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-014-1818-8

Keywords

Mathematics Subject Classification

Navigation