Skip to main content
Log in

Ca-deficient hydroxyapatite powder for producing tricalcium phosphate based ceramics

  • Biomaterials
  • Published:
Glass and Ceramics Aims and scope Submit manuscript

The properties of Ca-deficient hydroxyapatite powder synthesized from calcium nitrate and ammonium hydrophosphate at 60°C, pH = 7, and Ca/P = 1.67, 1.61, and 1.48 are presented. After sintering at 1100°C for 6 h the phase composition of the ceramic based on these powders was represented by tricalcium phosphate (Ca/P = 1.48) or tricalcium phosphate hydroxyapatite (Ca/P = 1.67 and 1.61). The grain size of the ceramic was 100 – 1000 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. M. M. Stevens, “Biomaterials for bone tissue engineering,” Materials Today, 11(5), 18 – 25 (2008).

    Article  CAS  Google Scholar 

  2. http://us.synthes.com.

  3. B. Gossner, “Uber die Kristallstruktur von Glaserit und Kaliumsulfat,” Neues Jb. Miner. Momatsh A, 57, 89 – 116 (1928).

    CAS  Google Scholar 

  4. J. H. Welch and W. Gutt, “High temperature studies of the system calcium oxide-phosphorus pentoxide,” J. Chem. Soc., No. 10, 4442 – 4444 (1961).

    Google Scholar 

  5. R. W. Nurse, J. H. Welsch, and W. Gutt, “High temperature equilibria in the system dicalcium silicate – tricalcium phosphate,” Ibid., No. 3, 1077 – 1083 (1959).

  6. K. S. TenHuisen and P. W. Brown, “Phase evolution during the formation of α-tricalcium phosphate,” J. Am. Cer. Soc., 82(10), 2813 – 2818 (1999).

    Article  CAS  Google Scholar 

  7. A. Kuznetsov, D. Larioniv, A. Stepuk, et al., “Calcium phosphate scaffolds fabricated via chemical bonding technique from different precursors,” Mat.-wiss. U. Werkstofftech., 40(4), 227 – 284 (2009).

    Article  Google Scholar 

  8. T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, and A. V. Kuznetsov, “Composite ceramic containing a bioresorbable phase,” Steklo Keram., No. 3, 31 – 35 (2007); T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, and A. V. Kuznetsov, “Composite ceramic containing a bioresorbable phase,” Glass Ceram., 64(3 – 4), 102 – 106 (2007).

    Google Scholar 

  9. T. V. Safronova, A. V. Kuznetsov, S. A. Korneychuk, et al., “Calcium phosphate powders synthesized from solutions with [Ca2+]/[PO 3-4 ] = 1 for bioresorbable ceramics,” Cent. Eur. J. Chem., 7(2), 184 – 191 (2009).

    Article  CAS  Google Scholar 

  10. A. Tas Cuneyt and B. Bhaduri Sarit, “Chemical processing of CaHPO4∙2H2O: its conversion to hydroxyapatite,” J. Am. Ceram. Soc., 87(12), 2195 – 2200 (2004).

    Article  Google Scholar 

  11. M. Tamai, M. Nakamura, T. Isshiki, et al., “Metastable phase in thermal decomposition of Ca-deficient hydroxyapatite,” Mater. Med., 14(7), 617 – 622 (2003).

    Article  CAS  Google Scholar 

  12. S. Somrani, C. Rey, and M. Jemal, “Thermal evolution of amorphous tricalcium phosphate,” J. Mater. Chem., 13, 888 – 892 (2003).

    Article  CAS  Google Scholar 

  13. E. S. Kovaleva, M. P. Shabanov, V. I. Putlyaev, et al., “Bioresorbable carbonated hydroxyapatite Ca10 – x Na x (PO4)6 – x (CO3) x (OH)2 powders for bioactive materials preparation,” Cent. Eur. J. Chem., 7(2), 168 – 174 (2009).

    Article  CAS  Google Scholar 

  14. S. Raynaud, E. Champion, D. Bernache-Assollant, and P. Thomas, “Calcium phosphate apatites with variable Ca/P atomic ratio. I. Synthesis, characterization, and thermal stability of powders,” Biomaterials, 23, 1065 – 1072 (2002).

    Article  CAS  Google Scholar 

  15. S. Raynaud, E. Champion, D. Bernache-Assollant, and P. Thomas, “Calcium phosphate apatites with variable Ca/P atomic ratio. II. Calcination and sintering,” Biomaterials, 23, 1073 – 1080 (2002).

    Article  CAS  Google Scholar 

  16. M. Villet-Regi, L. M. Rodriguez, and A. J. Salinas, “Synthesis and characterization of calcium deficient apatite,” Solid State Ionics, 101 – 103, 1279 – 1285 (1997).

    Article  Google Scholar 

  17. T. V. Safronova, M. A. Shekhirev, V. I. Putlyaev, and Yu. D. Tret’-yakov, “Ceramic materials based on hydroxylapatite synthesized from solutions with different concentration of the initial reagents,” Inorg. Mater., No. 8, 1005 – 1014 (2007); T. V. Safronova, M. A. Shekhirev, V. I. Putlyaev, and Yu. D. Tret’yakov, “Hydroxyapatite-based ceramic materials prepared using solutions of different concentrations,” Inorg. Mater., 43(8), 901 – 909 (2007).

  18. T. V. Safronova, V. I. Putlyaev,M. A. Shekhirev, and A. V. Kuznetsov, “Disperse systems in the technology of ceramics based on calcium hydroxyapatite,” Steklo Keram., No. 1, 21 – 25 (2007); T. V. Safronova, V. I. Putlyaev, M. A. Shekhirev, and A. V. Kuznetsov, “Disperse systems in calcium hydroxyapatite ceramics technology,” Glass Ceram., 64(1 – 2), 22 – 26 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. V. Safronova.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safronova, T.V., Putlyaev, V.I., Avramenko, O.A. et al. Ca-deficient hydroxyapatite powder for producing tricalcium phosphate based ceramics. Glass Ceram 68, 28–32 (2011). https://doi.org/10.1007/s10717-011-9315-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10717-011-9315-y

Key words

Navigation