Skip to main content
Log in

Analysis of sugar chain-binding specificity of tomato lectin using lectin blot: recognition of high mannose-type N-glycans produced by plants and yeast

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The sugar chain-binding specificity of tomato lectin (LEA) against glycoproteins was investigated qualitatively using lectin blot analysis. Glycoproteins containing tri- and tetra-antennary complex-type N-glycans were stained with LEA. Unexpectedly, glycoproteins containing high mannose-type N-glycans and a horseradish peroxidase were stained with LEA. LEA blot analysis of the glycoproteins accompanied by treatment with exoglycosidase revealed that the binding site of LEA for the complex-type N-glycans was the N-acetyllactosaminyl side chains, whereas the proximal chitobiose core appeared to be the binding site of LEA for high mannose-type N-glycans. Despite these results, the glycoproteins did not inhibit the hemagglutinating activity of LEA. Among the chitin-binding lectins compared, potato tuber lectin showed specificity similar to LEA on lectin blot analysis, while Datura stramonium lectin and wheat germ agglutinin (WGA) did not interact with glycoproteins containing high mannose-type N-glycans, except that RNase B was stained by WGA.

Based on these observations, LEA blot analysis was applied to sugar chain analysis of tomato glycoproteins. The most abundant LEA-reactive glycoprotein was purified from the exocarp of ripe tomato fruits, and was identified as the tomato anionic peroxidase1 (TAP1). These results suggest that LEA interacts with glycoproteins produced by tomatoes, which participate in biological activities in tomato plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

LEA:

Tomato lectin

WGA:

wheat germ agglutinin

STA:

Solanum tuberosum lectin

DSA:

Datsura stramonium lectin

SBA:

soybean agglutinin

RNase B:

ribonuclease B from bovine pancreas

HRP:

horseradish peroxidase

GlcNAc:

N-acetylglucosamine

Fuc:

fucose

Xyl:

xylose

Man:

mannose

Gal:

galactose

TAP1:

tomato anionic peroxidase-1

References

  • Nachbar MS, Oppenheim JD, Thomas JO, Lectins in the U.S. Diet. Isolation and characterization of a lectin from the tomato (Lycopersicon esculentum), J Biol Chem 255, 2056–61 (1980).

    PubMed  CAS  Google Scholar 

  • Kilpatrick DC, Purification and some properties of a lectin from the fruit juice of the tomato (Lycopersicon esculentum), Biochem J 185, 269–72 (1980).

    PubMed  CAS  Google Scholar 

  • Merkle RK, Cummings RD, Tomato lectin is located predominantly in the locular fluid of ripe tomatoes, Plant Cell 48, 71 –78 (1987).

    CAS  Google Scholar 

  • Saito K, Yagi H, Baba K, Goldstein IJ, Misaki A, Purification, properties and carbohydrate-binding specificity of cherry tomato (Lycopersicon esculentum var. Cherry) lectin, J Appl Glycosci 43, 331–45 (1996).

    CAS  Google Scholar 

  • Merkle RK, Cummings RD, Relationship of the terminal sequences to the length of poly-N-acetyllactosamine chains in asparagine-linked oligosaccharides from the mouse lymphoma cell line BW5147, J Biol Chem 262, 8179–89 (1987).

    PubMed  CAS  Google Scholar 

  • Lee N, Wang W-C, Fukuda M, Granulocytic differentiation of HL-60 cells is associated with increase of poly-N-acetyllactosamine in Asn-linked oligosaccharides attached to human lysosomal membrane glycoproteins, J Biol Chem 265, 20476–87 (1990).

    PubMed  CAS  Google Scholar 

  • Kawashima H, Sueyoshi S, Li H, Yamamoto K, Osawa T, Carbohydrate binding specificities of several poly-N-acetyllactosamine-binding lectins, Glycoconjugate J 7, 323–34 (1990).

    Article  CAS  Google Scholar 

  • Raikhel NV, Lee HI, Structure and function of chitin-binding proteins, Annu. Rev. Plant Physiol. Plant Mol. Biol. 44, 591–615 (1993).

    Article  CAS  Google Scholar 

  • Czapla T, Lang B, Effect of plant lectins on the larval development of european corn borer (Lepidoptera: Pyraidae) and southern corn rootworm (Coleoptera: Chrysomelidae), J Econ Entomol 2480–85 (1990).

  • Schlumbaum A, Mauch F, Vögeli U, Boller T, Plant chitinases are potent inhibitors of fungal growth, Nature 324, 365–67 (1986).

    Article  CAS  Google Scholar 

  • Naito Y, Minamihara T, Ando A, Marutani T, Oguri S, Nagata Y, Domain construction of cherry-tomato lectin: relation to newly found 42-kDa protein, Biosci Biotechnol Biochem 65, 86–93 (2001).

    Article  PubMed  CAS  Google Scholar 

  • Oguri S, Kamoshida M, Nagata Y, Momonoki YS, Kamimura H, Characterization and sequence of tomato 2S seed albumin: a storage protein with sequence similarities to the fruit lectin, Planta 216, 976–84 (2003).

    PubMed  CAS  Google Scholar 

  • Rupley JA, The hydrolysis of chitin by concentrated hydrochloric acid, and the preparation of low-molecular-weight substrates for lysozyme, Biochim Biophys Acta 83, 245–55 (1964).

    PubMed  CAS  Google Scholar 

  • Oguri S, Ando A, Nagata Y, A novel developmental stage-specific lectin of the basidiomycete Pleurotus cornucopiae, J Bacteriol 178, 5692–8 (1996).

    PubMed  CAS  Google Scholar 

  • Chance B, Maehly AC, Assay of catalases and peroxidases, Methods Enzymol 2, 764–75 (1955).

    Google Scholar 

  • Nilsson B, Nordén NE, Svensson S, Structural studies on the carbohydrate portion of fetuin, J Biol Chem 254, 4545–53 (1979).

    PubMed  CAS  Google Scholar 

  • Yoshima H, Matsumoto A, Mizuochi T, Kawasaki T, Kobata A, Comparative study of the carbohydrate moieties of rat and human plasma alpha 1-acid glycoproteins, J Biol Chem 256, 8476–84 (1981).

    PubMed  CAS  Google Scholar 

  • Yamashita K, Kamerling JP, Kobata A, Structural studies of the sugar chains of hen ovomucoid. Evidence indicating that they are formed mainly by the alternate biosynthetic pathway of asparagine-linked sugar chains, J Biol Chem 258, 3099–106 (1983).

    PubMed  CAS  Google Scholar 

  • Yamashita K, Koide N, Endo T, Iwaki Y, Kobata A, Altered glycosylation of serum transferrin of patients with hepatocellular carcinoma, J Biol Chem 264, 2415–23 (1989).

    PubMed  CAS  Google Scholar 

  • Yamashita K, Tachibana Y, Kobata A, The structures of the galactose-containing sugar chains of ovalbumin, J Biol Chem 253, 3862–9 (1978).

    PubMed  CAS  Google Scholar 

  • An HJ, Peavy TR, Hedrick JL, Lebrilla CB, Determination of N-glycosylation sites and site heterogeneity in glycoproteins, Anal Chem 75, 5628–37 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Liang CJ, Yamashita K, Kobata A, Structural study of the carbohydrate moiety of bovine pancreatic ribonuclease B, J Biochem (Tokyo) 88, 51–8 (1980).

    CAS  Google Scholar 

  • Dorland L, van Halbeek H, Vleigenthart JF, Lis H, Sharon N, Primary structure of the carbohydrate chain of soybean agglutinin. A reinvestigation by high resolution 1H NMR spectroscopy, J Biol Chem 256, 7708–11 (1981).

    PubMed  CAS  Google Scholar 

  • Trimble RB, Atkinson PH, Structure of yeast external invertase Man8 − 14GlcNAc processing intermediates by 500-megahertz 1H NMR spectroscopy, J Biol Chem 261, 9815–24 (1986).

    PubMed  CAS  Google Scholar 

  • Yang BY, Gray JS, Montgomery R, The glycans of horseradish peroxidase, Carbohydr Res 287, 203–12 (1996).

    Article  PubMed  CAS  Google Scholar 

  • Roberts E, Kolattukudy PE, Molecular cloning, nucleotide sequence, and abscisic acid induction of suberization-associated highly anionic peroxidase, Mol Gen Genet 217, 223–32 (1989).

    PubMed  CAS  Google Scholar 

  • Tretter V, Altmann F, Marz L, Peptide-N4-(N-acetyl-beta-glucosaminyl)asparagine amidase F cannot release glycans with fucose attached alpha 1 → 3 to the asparagine-linked N-acetylglucosamine residue, Eur J Biochem 199, 647–52 (1991).

    Article  PubMed  CAS  Google Scholar 

  • Smith JJ, Raikhel NV, Nucleotide sequences of cDNA clones encoding wheat germ agglutinin isolectins A and D, Plant Mol Biol 13, 601–3 (1989).

    Article  PubMed  CAS  Google Scholar 

  • Van Damme EJ, Barre A, Rouge P, Peumans WJ, Potato lectin: an updated model of a unique chimeric plant protein, Plant J 37, 34–45 (2004).

    Article  PubMed  CAS  Google Scholar 

  • Mohan R, Vijayan P, Kolattukudy PE, Developmental and tissue-specific expression of a tomato anionic peroxidase (tap1) gene by a minimal promoter, with wound and pathogen induction by an additional 5'-flanking region, Plant Mol Biol 22, 475–90 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Mohan R, Bajar AM, Kolattukudy PE, Induction of a tomato anionic peroxidase gene (tap1) by wounding in transgenic tobacco and activation of tap1/GUS and tap2/GUS chimeric gene fusions in transgenic tobacco by wounding and pathogen attack, Plant Mol Biol 21, 341–54 (1993).

    Article  PubMed  CAS  Google Scholar 

  • Weangsripanaval T, Nomura N, Moriyama T, Ohta N, Ogawa T, Identification of suberizatio-associated anionic peroxidase as a possible allergenic protein from tomato, Biosci Biotechnol Biochem 67, 1299–304 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Zeleny R, Altmann F, Praznik W, Structural characterization of the N-linked oligosaccharides from tomato fruit, Phytochemistry 51, 199–210 (1999).

    Article  PubMed  CAS  Google Scholar 

  • Mika A, Lüthje S, Properties of guaiacol peroxidase activities isolated corn root plasma membranes, Plant Physiol 132, 1489–98 (2003).

    Article  PubMed  CAS  Google Scholar 

  • Basse CW, Bock K, Boller T, Elicitors and suppressors of the defense response in tomato cells. Purification and characterization of glycopeptide elicitors and glycan suppressors generated by enzymatic cleavage of yeast invertase, J Biol Chem 267, 10258–65 (1992).

    PubMed  CAS  Google Scholar 

  • Yunovitz H, Gross KC, Delay of tomato fruit ripening by an oligosaccharide N-glycan. Interactions with IAA, galactose and lectins, Physiologia Plantarum 90, 152–56 (1994).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suguru Oguri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oguri, S. Analysis of sugar chain-binding specificity of tomato lectin using lectin blot: recognition of high mannose-type N-glycans produced by plants and yeast. Glycoconj J 22, 453–461 (2005). https://doi.org/10.1007/s10719-005-5329-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-005-5329-4

Keywords

Navigation