Skip to main content
Log in

Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces

  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Poly-N-acetyllactosamine (poly-LacNAc) structures have been identified as important ligands for galectin-mediated cell adhesion to extra-cellular matrix (ECM) proteins. We here present the biofunctionalization of surfaces with poly-LacNAc structures and subsequent binding of ECM glycoproteins. First, we synthesized β-GlcNAc glycosides carrying a linker for controlled coupling onto chemically functionalized surfaces. Then we produced poly-LacNAc structures with defined lengths using human β1,4-galactosyltransferase-1 and β1,3-N-acetylglucosaminyltransferase from Helicobacter pylori. These compounds were also used for kinetic characterization of glycosyltransferases and lectin binding assays. A mixture of poly-LacNAc-structures covalently coupled to functionalized microtiter plates were identified for best binding to our model galectin His6CGL2. We further demonstrate for the first time that these poly-LacNAc surfaces are suitable for further galectin-mediated binding of the ECM glycoproteins laminin and fibronectin. This new technology should facilitate cell adhesion to biofunctionalized surfaces by imitating the natural ECM microenvironment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Scheme 4
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Spiro, R.G.: Protein glycosylation: natures, distribution, enzymatic formation, and disease implications of glycopeptide bonds. Glycobiology 12, 43R–56R (2002)

    Article  PubMed  CAS  Google Scholar 

  2. Smith, A.E., Helenius, A.: How viruses enter animal cells. Science 304, 237–242 (2004)

    Article  PubMed  CAS  Google Scholar 

  3. Campbell, C.T., Yarema, K.J.: Large-scale approaches for glycobiology. Genome Biol. 6, 236–244 (2005)

    Article  PubMed  Google Scholar 

  4. Paulson, J.C., Blixt, O., Collins, B.E.: Sweet spots in functional glycomics. Nat. Chem. Biol. 2, 238–248 (2006)

    Article  PubMed  CAS  Google Scholar 

  5. Sasaki, K., Kurata-Miura, K., Ujita, M., Angata, K., Nakagawa, S., Sekine, S., Nishi, T., Fukuda, M.: Expression cloning of cDNA encoding a human b-1,3-N-acetylglucosaminyltransferase that is essential for poly-N-acetyllactosamine synthesis. Proc. Natl. Acad. Sci. U. S. A. 94, 14294–14299 (1997)

    Article  PubMed  CAS  Google Scholar 

  6. Ujita, M., McAuliffe, J., Suzuki, M., Hindsgaul, O., Clausen, H., Fukuda, M.N., Fukuda, M.: Regulation of I-branched poly-N-acetyllactosamine synthesis—concerted actions by i-extension enzyme, I-branching enzyme, and b1,4-galactosyltransferase I. J. Biol. Chem. 274, 9296–9304 (1999)

    Article  PubMed  CAS  Google Scholar 

  7. Leffler, H., Carlsson, S., Hedlund, M., Qian, Y., Poirier, F.: Introduction to galectins. Glycoconjugate J. 19, 433–440 (2004)

    Article  Google Scholar 

  8. Di Virgilio, S., Glushka, J., Moremen, K., Pierce, M.: Enzymatic synthesis of natural and 13C enriched linear poly-N-acetyllactosamines as ligands for galectin-1. Glycobiology 9, 353–364 (1999)

    Article  PubMed  Google Scholar 

  9. Stowell, S.R., Dias-Baruffi, M., Penttila, L., Renkonen, O., Nyame, A.K., Cummings, R.D.: Human galectin-1 recognition of poly-N-acetyllactosamine and chimeric polysaccharides. Glycobiology 14, 157–167 (2004)

    Article  PubMed  CAS  Google Scholar 

  10. Leppanen, A., Stowell, S., Blixt, O., Cummings, R.D.: Dimeric galectin-1 binds with high affinity to {alpha}2,3-sialylated and non-sialylated terminal N-acetyllactosamine units on surface-bound extended glycans. J. Biol. Chem. 280, 5549–5562 (2005)

    Article  PubMed  Google Scholar 

  11. Patnaik, S.K., Potvin, B., Carlsson, S., Sturm, D., Leffler, H., Stanley, P.: Complex N-glycans are the major ligands for galectin-1, -3, and -8 on Chinese hamster ovary cells. Glycobiology 16, 305–317 (2006)

    Article  PubMed  CAS  Google Scholar 

  12. Wu, A.M., Singh, T., Wu, J.H., Lensch, M., Andre, S., Gabius, H.-J.: Interaction profile of galectin-5 with free saccharides and mammalian glycoproteins: probing its fine specificity and the effect of naturally clustered ligand presentation. Glycobiology 16, 524–537 (2006)

    Article  PubMed  CAS  Google Scholar 

  13. Hughes, R.C.: Galectins as modulators of cell adhesion. Biochimie 83, 667–676 (2001)

    Article  PubMed  CAS  Google Scholar 

  14. Hughes, R.C.: Galectins in kidney development. Glycoconjugate J. 19, 621–629 (2004)

    Article  Google Scholar 

  15. Sharon, N., Lis, H.: History of lectins: from hemagglutinins to biological recognition molecules. Glycobiology 14, 53R–62R (2004)

    Article  PubMed  CAS  Google Scholar 

  16. Blixt, O., Vasiliu, D., Allin, K., Jacobsen, N., Warnock, D., Razi, N., Paulson, J.C., Bernatchez, S., Gilbert, M., Wakarchuk, W.: Chemoenzymatic synthesis of 2-azidoethyl-ganglio-oligosaccharides GD3, GT3, GM2, GD2, GT2, GM1, and GD1a. Carbohydr. Res. 340, 1963–1972 (2005)

    Article  PubMed  CAS  Google Scholar 

  17. Vasiliu, D., Razi, N., Zhang, Y., Jacobsen, N., Allin, K., Liu, X., Hoffmann, J., Bohorov, O., Blixt, O.: Large-scale chemoenzymtic synthesis of blood group and tumor-associated poly-N-acetyllactosamine antigens. Carbohydr. Res. 341, 1447–1457 (2006)

    Article  PubMed  CAS  Google Scholar 

  18. Unverzagt, C., André, S., Seifert, J., Kojima, S., Fink, C., Srikrishna, G., Freeze, H., Kayse, K., Gabius, H.-J.: Structure–activity profiles of complex biantennary glycans with core fucosylation and with/without additional a2,3/a2,6 sialylation: synthesis of neoglycoproteins and their properties in lectin assays, cell binding, and organ uptake. J. Med. Chem. 45, 478–491 (2002)

    Article  PubMed  CAS  Google Scholar 

  19. Murata, T., Honda, H., Hattori, T., Usui, T.: Enzymatic synthesis of poly-N-acetyllactosamines as potential substrates for endo-b-galactosidase-catalysed hydrolytic and transglycosylation reactions. Biochim. Biophys. Acta. 1722, 60–68 (2005)

    PubMed  CAS  Google Scholar 

  20. Blixt, O., Razi, N.: Strategies for synthesis of an oligosaccharide library using a chemo-enzymatic approach. In: Wang, P.G., Ichikawa, Y. (eds.) Synthesis of Carbohydrate through Biotechnology, pp. 93–112. American Chemical Society, Washington D. C. (2004)

    Google Scholar 

  21. Sears, P., Wong, C.-H.: Toward automated synthesis of oligosaccharides and glycoproteins. Science 291, 2344–2350 (2001)

    Article  PubMed  CAS  Google Scholar 

  22. Nicolaou, K.C., Watanabe, N., Li, J., Pastor, J., Winssinger, N.: Solid-phase synthesis of oligosaccharides: construction of a dodecasaccharide. Angew. Chem. Int. Ed. Engl. 37, 1559–1561 (1998)

    Article  CAS  Google Scholar 

  23. Plante, O.J., Palmacci, E.R., Seeberger, P.H.: Automated solid-phase synthesis of oligosaccharides. Science 291, 1523–1527 (2001)

    Article  PubMed  CAS  Google Scholar 

  24. Werz, D.B., Seeberger, P.H.: Carbohydrates as the next frontier in pharmaceutical research. Chem. Eur. J. 11, 3194–3206 (2005)

    Article  CAS  Google Scholar 

  25. Koeller, K.M., Wong, C.-H.: Synthesis of complex carbohydrates and glycoconjugates: enzyme-based and programmable one-pot strategies. Chem. Rev. 100, 4465–4493 (2000)

    Article  PubMed  CAS  Google Scholar 

  26. Daines, A.M., Maltman, B.A., Flitsch, S.L.: Synthesis and modifications of carbohydrates, using biotransformations. Curr. Opin. Cem. Biol. 8, 106–113 (2004)

    Article  CAS  Google Scholar 

  27. Zervosen, A., Elling, L.: A novel three-enzyme reaction cycle for the synthesis of N-acetyllactosamine with in situ regeneration of uridine 5′-diphosphate glucose and uridine 5′-diphosphate galactose. J. Am. Chem. Soc. 118, 1836–1840 (1996)

    Article  CAS  Google Scholar 

  28. Blixt, O., vanDie, I., Norberg, T., vandenEijnden, D.H.: High-level expression of the Neisseria meningitidis lgtA gene in Escherichia coli and characterization of the encoded N-acetylglucosaminyltransferase as a useful catalyst in the synthesis of GlcNAc beta 1 -> 3Gal and GalNAc beta 1-3Gal linkages. Glycobiology 9, 1061–1071 (1999)

    Article  PubMed  CAS  Google Scholar 

  29. Blixt, O., Brown, J., Schur, M.J., Wakarchuk, W., Paulson, J.C.: Efficient preparation of natural and synthetic galactosides with a recombinant b-1,4-Galactosyltransferase-/UDP-4′-Gal epimerase fusion protein. J. Org. Chem. 66, 2442–2448 (2001)

    Article  PubMed  CAS  Google Scholar 

  30. Niemelä, R., Natunen, J., Majuri, M.-L., Maaheima, H., Helin, J., Lowe, J.B., Renkonen, O., Renkonen, R.: Complementary acceptor and site specificities of Fuc-TIV and Fuc-TVII allow effective biosynthesis of Sialyl-TriLex and related polylactosamines present on glycoprotein counterreceptors of selectin. J. Biol. Chem. 273, 4021–4026 (1998)

    Article  PubMed  Google Scholar 

  31. Sauerzapfe, B., Namdjou, D.-J., Schumacher, T., Linden, N., Krenek, K., Kren, V., Elling, L.: Characterization of recombinant fusion constructs of human b1,4-galactosyltransferase 1 and the lipase pre-propeptide from Staphylococcus hyicus. J. Mol. Catal. B: Enzym. 50, 128–140 (2008)

    Article  CAS  Google Scholar 

  32. Logan, S.M., Altman, E., Mykytczuk, O., Brisson, J.-R., Chandan, V., Michael, F.S., Masson, A., Leclerc, S., Hiratsuka, K., Smirnova, N., Li, J., Wu, Y., Wakarchuk, W.W.: Novel biosynthetic functions of lipopolysaccharide rfaJ homologs from Helicobacter pylori. Glycobiology 15, 721–733 (2005)

    Article  PubMed  CAS  Google Scholar 

  33. Boulianne, R.P., Liu, Y., Aebi, M., Lu, B.C., Kues, U.: Fruiting body development in Coprinus cinereus: regulated expression of two galectins secreted by a non-classical pathway. Microbiology 146, 1841–1853 (2000)

    PubMed  CAS  Google Scholar 

  34. Walser, P.J., Haebel, P.W., Künzler, M., Sargent, D., Kues, U., Aebi, M., Ban, N.: Structure and functional analysis of the fungal galectin CGL2. Structure 12, 689–702 (2004)

    Article  PubMed  CAS  Google Scholar 

  35. Shin, H., Jo, S., Mikos, A.G.: Biomimetic materials for tissue engineering. Biomaterials 24, 4353–4364 (2003)

    Article  PubMed  CAS  Google Scholar 

  36. Lutolf, M.P., Hubbell, J.A.: Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat. Biotechnol. 23, 47–55 (2005)

    Article  PubMed  CAS  Google Scholar 

  37. Krist, P., Vannucci, L., Sadalapure, K., Patel, A., Bezouška, K., Pospíšil, M., Kuzma, M., Lindhorst, T.K., Petruš, L., Kren, V.: Fluorescent labeled thiourea-bridged glycodendrons. ChemBioChem. 5, 445–452 (2004)

    Article  PubMed  CAS  Google Scholar 

  38. Ujita, M., Misra, A.K., McAuliffe, J., Hindsgaul, O., Fukuda, M.: Poly-N-acetyllactosamine extension in N-Glycans and core 2- and core 4-branched O-glycans is differentially controlled by i-extension enzyme and different members of the beta 1,4-galactosyltransferase gene family. J. Biol. Chem. 275, 15868–15875 (2000)

    Article  PubMed  CAS  Google Scholar 

  39. Alvarez, R.A., Blixt, O.: Identification of ligand specificities for glycan-binding proteins using glycan arrays. Meth. Enzymol. 415, 292–310 (2006)

    Article  PubMed  CAS  Google Scholar 

  40. de Paz, J.L., Horlacher, T., Seeberger, P.H.: Oligosaccharide microarrays to map interactions of carbohydrates in biological systems. Meth. Enzymol. 415, 269–292 (2006)

    Article  PubMed  Google Scholar 

  41. Nakamura-Tsuruta, S., Uchiyama, N., Hirabayashi, J.: High throughput analysis of lectin oligosaccharide interactions by automated frontal affinity chromatography. Meth. Enzymol. 415, 311–325 (2006)

    Article  PubMed  CAS  Google Scholar 

  42. Liu, Y., Chai, W., Childs, R.A., Feizi, T.: Preparation of neoglycolipids with ring closed cores via chemoselective oxime ligation for microarray analysis of carbohydrate–protein interactions. Meth. Enzymol. 415, 326–340 (2006)

    Article  PubMed  CAS  Google Scholar 

  43. Uchiyama, N., Kuno, A., Koseki-Kuno, S., Ebe, Y., Horio, K., Yamada, M., Hirabayashi, J.: Development of a lectin microarray based on an evanescent field fluorescence principle. Meth. Enzymol. 415, 341–351 (2006)

    Article  PubMed  CAS  Google Scholar 

  44. Bülter, T., Schumacher, T., Namdjou, D.-J., Gutiérrez Gallego, R., Clausen, H., Elling, L.: Chemo-enzymatic synthesis of biotinylated nucleotide sugars as substrates for glycosyltransferases. ChemBioChem. 2, 884–894 (2001)

    Article  PubMed  Google Scholar 

  45. Namdjou, D.-J., Sauerzapfe, B., Schmiedel, J., Dräger, G., Bernatchez, S., Wakarchuk, W.W., Elling, L.: Combination of UDP-Glc(NAc) 4′-epimerase and galactose oxidase in a one-pot synthesis of biotinylated nucleotide sugars. Adv. Synth. Catal. 349, 314–318 (2007)

    Article  CAS  Google Scholar 

  46. Stults, C., Macher, B., Bhatti, R., Srivastava, O., Hindsgaul, O.: Characterization of the substrate specificity of alpha1,3galactosyltransferase utilizing modified N-acetyllactosamine disaccharides. Glycobiology 9, 661–668 (1999)

    Article  PubMed  CAS  Google Scholar 

  47. Künzler, M.: http://www.functionalglycomics.org/glycomics/publicdata.jsp

  48. Hirabayashi, J., Hashidate, T., Arata, Y., Nishi, N., Nakamura, T., Hirashima, M., Urashima, T., Oka, T., Futai, M., Muller, W.E.G., Yagi, F., Kasai, K.-I.: Oligosaccharide specificity of galectins: a search by frontal affinity chromatography. Biochim. Biophys. Acta. 1572, 232–254 (2002)

    PubMed  CAS  Google Scholar 

  49. Knibbs, R.N., Perini, F., Goldstein, I.J.: Structure of the major concanavalin a reactive oligosaccharides of the extracellular matrix component laminin. Biochemistry 28, 6379–6392 (1989)

    Article  PubMed  CAS  Google Scholar 

  50. Cooper, D.N.W.: Galectin-1: secretion and modulation of cell interactions with laminin. Trends Glycosci. Glycotechnol. 9, 57–67 (1997)

    CAS  Google Scholar 

  51. Barboni, E.A.M., Bawumia, S., Hughes, R.C.: Kinetic measurements of binding of galectin 3 to a laminin substratum. Glycoconjugate J. 16, 365–373 (1999)

    Article  CAS  Google Scholar 

  52. Tisi, D., Talts, J.F., Timpl, R., Hohenester, E.: Structure of the C-terminal laminin G-like domain pair of the laminin a2 chain harbouring binding sites for a-dystroglycan and heparin. EMBO J. 19, 1432–1440 (2000)

    Article  PubMed  CAS  Google Scholar 

  53. Ido, H., Harada, K., Futaki, S., Hayashi, Y., Nishiuchi, R., Natsuka, Y., Li, S., Wada, Y., Combs, A.C., Ervasti, J.M., Sekiguchi, K.: Molecular dissection of the a-dystroglycan- and integrin-binding sites within the globular domain of human laminin-10. J. Biol. Chem. 279, 10946–10954 (2004)

    Article  PubMed  CAS  Google Scholar 

  54. Tajiri, M., Yoshida, S., Wada, Y.: Differential analysis of site-specific glycans on plasma and cellular fibronectins: application of a hydrophilic affinity method for glycopeptide enrichment. Glycobiology 15, 1332–1340 (2005)

    Article  PubMed  CAS  Google Scholar 

  55. Hörmann, H., Richter, H., Jelinic, V.: Evidence for a cryptic lectin site in the cell-binding domain of plasma fibronectin. Hoppe Seylers Z. Physiol. Chem. 365, 517–524 (1984)

    PubMed  Google Scholar 

  56. Horton, D.: 2-Acetoamido-3,4,6-tri-O-acetyl-2-deoxy-a-d-glucopyranosyl chloride. Org. Synth. 46, 1 (1966)

    CAS  Google Scholar 

  57. Benalil, A., Carboni, B., Vaultier, M.: Synthesis of 1,2-Aminoazides. Conversion to unsymmetrical vicinal diamines by catalytic hydrogenation or reductive alkylation with dichloroboranes. Tetrahedron 47, 8177–8194 (1991)

    Article  CAS  Google Scholar 

  58. Römer, U., Schrader, H., Günther, N., Nettelstroth, N., Frommer, W.B., Elling, L.: Expression, purification and characterization of recombinant sucrose synthase 1 from Solanum tuberosum L. for carbohydrate engineering. J. Biotechnol. 107, 135–149 (2004)

    Article  PubMed  Google Scholar 

  59. Bernatchez, S., Szymanski, C.M., Ishiyama, N., Li, J., Jarrell, H.C., Lau, P.C., Berghuis, A.M., Young, N.M., Wakarchuk, W.W.: A single bifunctional UDP-GlcNAc/Glc 4-Epimerase supports the synthesis of three cell surface glycoconjugates in Campylobacter jejuni. J. Biol. Chem. 280, 4792–4802 (2005)

    Article  PubMed  CAS  Google Scholar 

  60. Wakarchuk, W.W., Cunningham, A., Watson, D.C., Young, N.M.: Role of paired basic residues in the expression of active recombinant galactosyltransferases from the bacterial pathogen Neisseria meningitidis. Protein Eng. 11, 295–302 (1998)

    Article  PubMed  CAS  Google Scholar 

  61. Shibatani, S., Fujiyama, K., Nishiguchi, S., Seki, T., Maekawa, Y.: Production and characterization of active soluble human [beta]1,4-galactosyltransferase in Escherichia coli as a useful catalyst in synthesis of the Gal [beta]1->4 GlcNAc linkage. J. Biosci. Bioeng. 91, 85–87 (2001)

    Article  PubMed  CAS  Google Scholar 

  62. Wakarchuk, W.W., Watson, D., St Michael, F., Li, J., Wu, Y., Brisson, J.-R., Young, N.M., Gilbert, M.: Dependence of the bi-functional nature of a sialyltransferase from Neisseria meningitidis on a single amino acid substitution. J. Biol. Chem. 276, 12785–12790 (2001)

    Article  PubMed  CAS  Google Scholar 

  63. Gilbert, M., Karwaski, M.-F., Bernatchez, S., Young, N.M., Taboada, E., Michniewicz, J., Cunningham, A.-M., Wakarchuk, W.W.: The genetic bases for the variation in the lipo-oligosaccharide of the mucosal pathogen, campylobacter jejuni. Biosynthesis of sialylated ganglioside mimics in the core oligosaccharide. J. Biol. Chem. 277, 327–337 (2002)

    Article  PubMed  CAS  Google Scholar 

  64. Brinkmann, N., Malissard, M., Ramuz, M., Römer, U., Schumacher, T., Berger, E.G., Elling, L., Wandrey, C., Liese, A.: Chemo-enzymatic synthesis of the galili epitope Gal[alpha](1->3)Gal[beta](1->4)GlcNAc on a homogeneously soluble PEG polymer by a multi-enzyme system. Bioorg. Med. Chem. Lett. 11, 2503–2506 (2001)

    Article  PubMed  CAS  Google Scholar 

  65. Wakarchuk, W.W., Cunningham, A.M.: Capillary electrophoresis as an assay method for monitoring glycosyltransferase activity. Meth. Mol. Biol. 213, 263–274 (2003)

    CAS  Google Scholar 

  66. Uhrín, D., Barlow, P.N.: Gradient-enhanced one-dimensional proton chemical-shift correlation with full sensitivity. J. Magn. Reson. 126, 248–255 (1997)

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Dr. Markus Aebi (ETH Zürich) and Prof. Dr. Eric G. Berger (Zürich University) for providing the CGL2 plasmid and α3GalT plasmid, respectively. L.E. and B.S acknowledge financial support by the DFG Research Training Group 1035 “Biointerface”. Part of this work was supported by a bilateral grant from DAAD-AV ČR project PPP-D7-CZ 26/04-05D/03/44448 (V. K. & L. E.) and by projects MSMT LC06010 and GAAVCR IAA400200503. B.S. thanks the Boehringer Ingelheim Foundation—Travel Allowances for financial support during a stay in Dr. Wakarchuk’s laboratory. Dr. P. Halada (Inst. Microbiol., Prague) is thanked for the MS measurements. The excellent technical assistance (HPLC/ESI-MS and CE) by Dipl.-Ing. Dennis Hirtz (Laboratory for Biomaterials, RWTH Aachen University) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lothar Elling.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supporting Information

(DOC 744 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauerzapfe, B., Křenek, K., Schmiedel, J. et al. Chemo-enzymatic synthesis of poly-N-acetyllactosamine (poly-LacNAc) structures and their characterization for CGL2-galectin-mediated binding of ECM glycoproteins to biomaterial surfaces. Glycoconj J 26, 141–159 (2009). https://doi.org/10.1007/s10719-008-9172-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-008-9172-2

Keywords

Navigation