Skip to main content
Log in

Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells

  • Mini-Review
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

The structural diversity and localization of cell surface glycosphingolipids (GSLs), including gangliosides, in glycolipid-enriched microdomains (GEMs, also known as lipid rafts) render them ideally suited to play important roles in mediating intercellular recognition, interactions, adhesion, receptor function, and signaling. Gangliosides, sialic acid-containing GSLs, are most abundant in the nerve tissues. The quantity and expression pattern of gangliosides in brain change drastically throughout development and these changes are mainly regulated through stage-specific expression of glycosyltransferase genes. We previously demonstrated for the first time that efficient histone acetylation of the glycosyltransferase genes in mouse brain contributes to the developmental alteration of ganglioside expression. We further demonstrated that acetylation of histones H3 and H4 on the N-acetylgalactosaminyltransferase I (GalNAcT, GA2/GM2/GD2/GT2-synthase; B4galnt1) gene promoter resulted in recruitment of trans-activation factors. In addition, we showed that epigenetic activation of the GalNAcT gene was detected and accompanied by an apparent induction of neuronal differentiation of neural stem cells (NSCs) responding to an exogenous supplement of ganglioside GM1. Most recently, we found that nuclear GM1 binds with acetylated histones on the promoters of the GalNAcT as well as on the NeuroD1 genes in differentiated neurons. Here, we will introduce epigenetic regulation of ganglioside synthase genes in neural development and neuronal differentiation of NSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Yu R.K., Macala L.J., Taki T., Weinfield H.M., Yu F.S.: Developmental changes in ganglioside composition and synthesis in embryonic rat brain. J. Neurochem. 50(6), 1825–1829 (1988)

    Article  CAS  PubMed  Google Scholar 

  2. Yu R.K., Itokazu Y.: Glycolipid and glycoprotein expression during neural development. Advances in neurobiology. 9, 185–222 (2014). doi:10.1007/978-1-4939-1154-7_9

    Article  PubMed  Google Scholar 

  3. Yu R.K., Tsai Y.T., Ariga T., Yanagisawa M.: Structures, biosynthesis, and functions of gangliosides--an overview. Journal of oleo science. 60(10), 537–544 (2011)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakatani Y., Yanagisawa M., Suzuki Y., Yu R.K.: Characterization of GD3 ganglioside as a novel biomarker of mouse neural stem cells. Glycobiology. 20(1), 78–86 (2010). doi:10.1093/glycob/cwp149

    Article  CAS  PubMed  Google Scholar 

  5. Wang J., Yu R.K.: Interaction of ganglioside GD3 with an EGF receptor sustains the self-renewal ability of mouse neural stem cells in vitro. Proc. Natl. Acad. Sci. U. S. A. 110(47), 19137–19142 (2013). doi:10.1073/pnas.1307224110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Furukawa K., Ohmi Y., Ohkawa Y., Tajima O., Furukawa K.: Glycosphingolipids in the regulation of the nervous system. Advances in neurobiology. 9, 307–320 (2014). doi:10.1007/978-1-4939-1154-7_14

    Article  PubMed  Google Scholar 

  7. Wang J., Cheng A., Wakade C., Yu R.K.: Ganglioside GD3 is required for neurogenesis and long-term maintenance of neural stem cells in the postnatal mouse brain. The journal of neuroscience: the official journal of the society for. Neuroscience. 34(41), 13790–13800 (2014). doi:10.1523/JNEUROSCI.2275-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ledeen R.W., Wu G.: The multi-tasked life of GM1 ganglioside, a true factotum of nature. Trends Biochem. Sci. 40(7), 407–418 (2015). doi:10.1016/j.tibs.2015.04.005

    Article  CAS  PubMed  Google Scholar 

  9. Tsai Y.T., Yu R.K.: Epigenetic activation of mouse ganglioside synthase genes: implications for neurogenesis. J. Neurochem. 128(1), 101–110 (2014). doi:10.1111/jnc.12456

    Article  CAS  PubMed  Google Scholar 

  10. Hirabayashi Y., Gotoh Y.: Epigenetic control of neural precursor cell fate during development. Nat Rev Neurosci. 11(6), 377–388 (2010). doi:10.1038/nrn2810

    Article  CAS  PubMed  Google Scholar 

  11. Jobe E.M., McQuate A.L., Zhao X.: Crosstalk among Epigenetic Pathways Regulates Neurogenesis. Frontiers in neuroscience. 6, 59 (2012). doi:10.3389/fnins.2012.00059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hsieh J., Gage F.H.: Epigenetic control of neural stem cell fate. Curr Opin Genet Dev. 14(5), 461–469 (2004). doi:10.1016/j.gde.2004.07.006

    Article  CAS  PubMed  Google Scholar 

  13. Mehler M.F.: Epigenetics and the nervous system. Ann. Neurol. 64(6), 602–617 (2008). doi:10.1002/ana.21595

    Article  CAS  PubMed  Google Scholar 

  14. Hsieh J., Nakashima K., Kuwabara T., Mejia E., Gage F.H.: Histone deacetylase inhibition-mediated neuronal differentiation of multipotent adult neural progenitor cells. Proc. Natl. Acad. Sci. U. S. A. 101(47), 16659–16664 (2004). doi:10.1073/pnas.0407643101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choudhary C., Kumar C., Gnad F., Nielsen M.L., Rehman M., Walther T.C., Olsen J.V., Mann M.: Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science. 325(5942), 834–840 (2009). doi:10.1126/science.1175371

    Article  CAS  PubMed  Google Scholar 

  16. Jamaladdin S., Kelly R.D., O'Regan L., Dovey O.M., Hodson G.E., Millard C.J., Portolano N., Fry A.M., Schwabe J.W., Cowley S.M.: Histone deacetylase (HDAC) 1 and 2 are essential for accurate cell division and the pluripotency of embryonic stem cells. Proc. Natl. Acad. Sci. U. S. A. 111(27), 9840–9845 (2014). doi:10.1073/pnas.1321330111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Watson P.J., Fairall L., Santos G.M., Schwabe J.W.: Structure of HDAC3 bound to co-repressor and inositol tetraphosphate. Nature. 481(7381), 335–340 (2012). doi:10.1038/nature10728

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Millard C.J., Watson P.J., Celardo I., Gordiyenko Y., Cowley S.M., Robinson C.V., Fairall L., Schwabe J.W.: Class I HDACs share a common mechanism of regulation by inositol phosphates. Mol. Cell. 51(1), 57–67 (2013). doi:10.1016/j.molcel.2013.05.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ozcan S., Andrali S.S., Cantrell J.E.: Modulation of transcription factor function by O-GlcNAc modification. Biochim. Biophys. Acta. 1799(5–6), 353–364 (2010). doi:10.1016/j.bbagrm.2010.02.005

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hardiville S., Hart G.W.: Nutrient regulation of signaling, transcription, and cell physiology by O-GlcNAcylation. Cell Metab. 20(2), 208–213 (2014). doi:10.1016/j.cmet.2014.07.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lewis B.A., Hanover J.A.: O-GlcNAc and the epigenetic regulation of gene expression. The Journal of biological chemistry. 289(50), 34440–34448 (2014). doi:10.1074/jbc.R114.595439

    Article  PubMed  PubMed Central  Google Scholar 

  22. Suzuki Y., Yanagisawa M., Ariga T., Yu R.K.: Histone acetylation-mediated glycosyltransferase gene regulation in mouse brain during development. J. Neurochem. 116(5), 874–880 (2011). doi:10.1111/j.1471-4159.2010.07042.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Tsai Y.T., Itokazu Y., Yu R.K.: GM1 Ganglioside is Involved in Epigenetic Activation Loci of Neuronal Cells. Neurochemical research. 41(1–2), 107–115 (2016). doi:10.1007/s11064-015-1742-7

    Article  CAS  PubMed  Google Scholar 

  24. Bouvier J.D., Seyfried T.N.: Ganglioside composition of normal and mutant mouse embryos. J. Neurochem. 52(2), 460–466 (1989)

    Article  CAS  PubMed  Google Scholar 

  25. Ngamukote S., Yanagisawa M., Ariga T., Ando S., Yu R.K.: Developmental changes of glycosphingolipids and expression of glycogenes in mouse brains. J. Neurochem. 103(6), 2327–2341 (2007). doi:10.1111/j.1471-4159.2007.04910.x

    Article  CAS  PubMed  Google Scholar 

  26. Kizuka Y., Kitazume S., Okahara K., Villagra A., Sotomayor E.M., Taniguchi N.: Epigenetic regulation of a brain-specific glycosyltransferase N-acetylglucosaminyltransferase-IX (GnT-IX) by specific chromatin modifiers. The Journal of biological chemistry. 289(16), 11253–11261 (2014). doi:10.1074/jbc.M114.554311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Kizuka Y., Kitazume S., Yoshida M., Taniguchi N.: Brain-specific expression of N-acetylglucosaminyltransferase IX (GnT-IX) is regulated by epigenetic histone modifications. The Journal of biological chemistry. 286(36), 31875–31884 (2011). doi:10.1074/jbc.M111.251173

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Xia T., Gao L., Yu R.K., Zeng G.: Characterization of the promoter and the transcription factors for the mouse UDP-gal:betaGlcNAc beta1,3-galactosyltransferase gene. Gene. 309(2), 117–123 (2003)

    Article  CAS  PubMed  Google Scholar 

  29. Xia T., Zeng G., Gao L., Yu R.K.: Sp1 and AP2 enhance promoter activity of the mouse GM3-synthase gene. Gene. 351, 109–118 (2005). doi:10.1016/j.gene.2005.03.010

    Article  CAS  PubMed  Google Scholar 

  30. Yu R.K., Bieberich E., Xia T., Zeng G.: Regulation of ganglioside biosynthesis in the nervous system. Journal of lipid research. 45(5), 783–793 (2004). doi:10.1194/jlr.R300020-JLR200

    Article  CAS  PubMed  Google Scholar 

  31. Takashima S., Kono M., Kurosawa N., Yoshida Y., Tachida Y., Inoue M., Kanematsu T., Tsuji S.: Genomic organization and transcriptional regulation of the mouse GD3 synthase gene (ST8Sia I): comparison of genomic organization of the mouse sialyltransferase genes. Journal of biochemistry. 128(6), 1033–1043 (2000)

    Article  CAS  PubMed  Google Scholar 

  32. Lucki N.C., Sewer M.B.: Nuclear sphingolipid metabolism. Annu Rev Physiol. 74, 131–151 (2012). doi:10.1146/annurev-physiol-020911-153321

    Article  CAS  PubMed  Google Scholar 

  33. Wang J., Wu G., Miyagi T., Lu Z.H., Ledeen R.W.: Sialidase occurs in both membranes of the nuclear envelope and hydrolyzes endogenous GD1a. J. Neurochem. 111(2), 547–554 (2009). doi:10.1111/j.1471-4159.2009.06339.x

    Article  CAS  PubMed  Google Scholar 

  34. Saito M., Sugiyama K.: Characterization of nuclear gangliosides in rat brain: concentration, composition, and developmental changes. Arch. Biochem. Biophys. 398(2), 153–159 (2002). doi:10.1006/abbi.2001.2725

    Article  CAS  PubMed  Google Scholar 

  35. Tempera I., Buchetti B., Lococo E., Gradini R., Mastronardi A., Mascellino M.T., Sale P., Mosca L., d'Erme M., Lenti L.: GD3 nuclear localization after apoptosis induction in HUT-78 cells. Biochem. Biophys. Res. Commun. 368(3), 495–500 (2008). doi:10.1016/j.bbrc.2007.12.196

    Article  CAS  PubMed  Google Scholar 

  36. Hait N.C., Allegood J., Maceyka M., Strub G.M., Harikumar K.B., Singh S.K., Luo C., Marmorstein R., Kordula T., Milstien S., Spiegel S.: Regulation of histone acetylation in the nucleus by sphingosine-1-phosphate. Science. 325(5945), 1254–1257 (2009). doi:10.1126/science.1176709

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Talamas J.A., Capelson M.: Nuclear envelope and genome interactions in cell fate. Front. Genet. 6, 95 (2015). doi:10.3389/fgene.2015.00095

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wu G., Lu Z.H., Ledeen R.W.: GM1 ganglioside in the nuclear membrane modulates nuclear calcium homeostasis during neurite outgrowth. J. Neurochem. 65(3), 1419–1422 (1995)

    Article  CAS  PubMed  Google Scholar 

  39. Wu G., Lu Z.H., Ledeen R.W.: Induced and spontaneous neuritogenesis are associated with enhanced expression of ganglioside GM1 in the nuclear membrane. The Journal of neuroscience: the official journal of the Society for Neuroscience. 15(5 Pt 2), 3739–3746 (1995)

    CAS  Google Scholar 

  40. Xie X., Wu G., Lu Z.H., Ledeen R.W.: Potentiation of a sodium-calcium exchanger in the nuclear envelope by nuclear GM1 ganglioside. J. Neurochem. 81(6), 1185–1195 (2002)

    Article  CAS  PubMed  Google Scholar 

  41. Kotzerke J., Stibane C., Dralle H., Wiese H., Burchert W.: Screening for pheochromocytoma in the MEN 2 syndrome. Henry Ford Hosp Med J. 37(3–4), 129–131 (1989)

    CAS  PubMed  Google Scholar 

  42. Saito M., Hagita H., Ito M., Ando S., Yu R.K.: Age-dependent reduction in sialidase activity of nuclear membranes from mouse brain. Exp. Gerontol. 37(7), 937–941 (2002)

    Article  CAS  PubMed  Google Scholar 

  43. Saito M., Fronda C.L., Yu R.K.: Sialidase activity in nuclear membranes of rat brain. J. Neurochem. 66(5), 2205–2208 (1996)

    Article  CAS  PubMed  Google Scholar 

  44. Ariga T., Itokazu Y., McDonald M.P., Hirabayashi Y., Ando S., Yu R.K.: Brain gangliosides of a transgenic mouse model of Alzheimer's disease with deficiency in GD3-synthase: expression of elevated levels of a cholinergic-specific ganglioside, GT1aalpha. ASN Neuro. 5(2), 141–148 (2013). doi:10.1042/AN20130006

    Article  CAS  PubMed  Google Scholar 

  45. Ariga, T., Wakade, C., Yu, R.K.: The pathological roles of ganglioside metabolism in Alzheimer's disease: effects of gangliosides on neurogenesis. Int. J. Alzheimers Dis. 2011, 193618 (2011). doi:10.4061/2011/193618

  46. Itokazu Y., Yu R.K.: Amyloid beta-peptide 1-42 modulates the proliferation of mouse neural stem cells: Upregulation of Fucosyltransferase IX and notch signaling. Mol. Neurobiol. (2014). doi:10.1007/s12035-014-8634-8

    PubMed  PubMed Central  Google Scholar 

  47. Wu G., Lu Z.H., Kulkarni N., Ledeen R.W.: Deficiency of ganglioside GM1 correlates with Parkinson's disease in mice and humans. J. Neurosci. Res. 90(10), 1997–2008 (2012). doi:10.1002/jnr.23090

    Article  CAS  PubMed  Google Scholar 

  48. Maglione V., Marchi P., Di Pardo A., Lingrell S., Horkey M., Tidmarsh E., Sipione S.: Impaired ganglioside metabolism in Huntington's disease and neuroprotective role of GM1. The journal of neuroscience: the official journal of the society for. Neuroscience. 30(11), 4072–4080 (2010). doi:10.1523/JNEUROSCI.6348-09.2010

    Article  CAS  PubMed  Google Scholar 

  49. Rapport M.M.: Implications of altered brain ganglioside profiles in amyotrophic lateral sclerosis (ALS. Acta Neurobiol. Exp. (Wars). 50(4–5), 505–513 (1990)

    CAS  Google Scholar 

  50. Rapport M.M., Donnenfeld H., Brunner W., Hungund B., Bartfeld H.: Ganglioside patterns in amyotrophic lateral sclerosis brain regions. Ann. Neurol. 18(1), 60–67 (1985). doi:10.1002/ana.410180111

    Article  CAS  PubMed  Google Scholar 

  51. Yu R.K., Ledeen R.W., Eng L.F.: Ganglioside abnormalities in multiple sclerosis. J. Neurochem. 23(1), 169–174 (1974)

    Article  CAS  PubMed  Google Scholar 

  52. Yu R.K., Ueno K., Glaser G.H., Tourtellotte W.W.: Lipid and protein alterations of spinal cord and cord myelin of multiple sclerosis. J. Neurochem. 39(2), 464–477 (1982)

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a VA Merit Review Award (1 IO1BX001388 to RKY), NIH grants (RO1 NS26994 and RO1 NS11853 to RKY) and Mizutani Foundation for Glycoscience (150026 to YI).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert K. Yu.

Ethics declarations

Conflicts of interest

The authors declare that they have no conflicts of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Itokazu, Y., Tsai, YT. & Yu, R.K. Epigenetic regulation of ganglioside expression in neural stem cells and neuronal cells. Glycoconj J 34, 749–756 (2017). https://doi.org/10.1007/s10719-016-9719-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-016-9719-6

Keywords

Navigation