Skip to main content
Log in

Genome sizes in diploid and allopolyploid Arachis L. species (section Arachis)

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

An Erratum to this article was published on 17 January 2015

Abstract

Species of section Arachis with x = 10 are important for peanut breeding and have been organized in five different genomes (A, B, D, F and K). The few available estimates of the DNA content are inconsistent and hampered the understanding of the evolutionary trends and in decision making for genomic studies of the group. Considering that, the objectives of this research were to measure the DNA content for all available (26) species and to make evolutionary inferences at the diploid and tetraploid level for section Arachis. The 2C values obtained by flow cytometry ranged from 2.55 to 3.22 pg among the diploid species. The annual species belonging to different genomes tend to have different genome sizes. However, the 2C values of the perennial species of the A genome were distributed almost along the whole range of genome sizes here observed. The distribution of 2C values partially support the genome arrangement proposed for the section. The comparisons of 2C values with karyotype parameters suggests that changes in DNA content have been proportionally distributed among the chromosome arms, and that the heterochromatic fraction was not directly involved in that changes. Within the A genome, the annual species has lower DNA content than the perennial ones, according to the nucleotype hypothesis. However, the lack of significant relationships with geoclimatic variables suggests that there are many intrinsic factors determining particular ecological roles of the DNA content in the different lineages of section Arachis. The constancy of the Cx values observed in the polyploids compared to those of the parental species suggests that the allopolyploidization event that originated the cultivated peanut did not induce significant changes in the genome size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

DAPI:

4′.6-diamidino-2-phenylindole (DAPI)

Pg:

Picograms

Mbp:

Mega base pairs

GISH:

Genome in situ hybridization

References

  • Albach DC, Greilhuber J (2004) Genome size variation and evolution in Veronica. Ann Bot 94:897–911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bancheva S, Greilhuber J (2006) Genome size in Bulgarian Centaurea s.l. (Asteraceae). Plant Syst Evol 257:95–117

    Article  CAS  Google Scholar 

  • Bennett MD (1972) Nuclear DNA content and minimum generation time in herbaceous plants. Proc R Soc Lond B 181:109–135

    Article  CAS  PubMed  Google Scholar 

  • Bennett MD (1976) DNA amount, latitude, and crop plant distribution. Environ Exp Bot 16:93–108

    Article  CAS  Google Scholar 

  • Bennett MD (1987) Variation in genomic form in plants and its economic implications. New Phytol 106:177–200

    Article  Google Scholar 

  • Bennett MD, Smith JB, Ward JP, Finch RA (1982) The relationship between chromosome volume and DNA content in unsquashed metaphase cells of barley, Hordeum vulgare cv. tuleen 346. J Cell Sci 56:101–111

    Google Scholar 

  • Bertioli DJ, Seijo G, Freitas FO, Valls JFM, Leal-Bertioli SCM, Moretzsohn MC (2011) An overview of peanut and its wild relatives. Plant Genet Resour 9:134–149

    Article  Google Scholar 

  • Bertioli DJ, Vidigal B, Nielen S, Ratnaparkhe MB, Lee TH, Leal-Bertioli SCM, Kim C, Guimarães PM, Seijo G, Schwarzacher T, Paterson AH, Heslop-Harrison P, Araujo ACG (2013) The repetitive component of the A genome of peanut (Arachis hypogaea) and its role in remodelling intergenic sequence space since its evolutionary divergence from the B genome. Ann Bot 112:545–559

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bottini MCJ, Greizerstein EJ, Aulicino MB, Poggio L (2000) Relationships among genome size, environmental conditions and geographical distribution in natural populations of NW Patagonian species of Berberis L. (Berberidaceae). Ann Bot 86:565–573

    Article  CAS  Google Scholar 

  • Chalup L, Grabiele M, Neffa VS, Seijo G (2014) DNA content in South American endemic species of Lathyrus. J Plant Res 127:469–480

    Article  CAS  PubMed  Google Scholar 

  • Dhillon SS, Rake AV, Miksche JP (1980) Reassociation kinetics and cytophotometric characterisation of peanut (Arachis hypogaea L.) DNA. Plant Physiol 65:1121–1127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Di Rienzo JA, Casanoves F, Balzarini MG, González L, Tablada M, Robledo CW (2013) InfoStat version 2013. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

  • Doležel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    Article  PubMed Central  PubMed  Google Scholar 

  • Fernández A, Krapovickas A (1994) Cromosomas y evolución en Arachis (Leguminosae). Bonplandia 8:188–220

    Google Scholar 

  • Gimenes MA, Lopes CR, Galgaro ML, Valls JF, Kochert G (2002) RFLP analysis of genetic variation in species of section Arachis, genus Arachis (Leguminosae). Euphytica 123:421–429

    Article  CAS  Google Scholar 

  • Gimenes MA, Hoshino AA, Barbosa AVG, Palmieri DA, Lopes CR (2007) Characterization and transferability of microsatellite markers of the cultivated peanut (Arachis hypogaea). BMC Plant Biol 7:9

    Article  PubMed Central  PubMed  Google Scholar 

  • Grabiele M, Chalup L, Robledo G, Seijo G (2012) Genetic and geographic origin of domesticated peanut as evidenced by 5S rDNA and chloroplast DNA sequences. Plant Syst Evol 298:1151–1165

    Article  Google Scholar 

  • Gregory MP, Gregory WC (1979) Exotic germoplasm of Arachis L. interspecific hybrids. J Hered 70:185–193

    Google Scholar 

  • Greilhuber J, Doležel J, Lysak MA, Bennett MD (2005) The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Ann Bot 95:255–260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Halward T, Stalker T, LaRue E, Kochert G (1992) Use of single-primer DNA amplifications in genetic studies of peanut (Arachis hypogaea L.). Plant Mol Biol 18:315–325

    Article  CAS  PubMed  Google Scholar 

  • He G, Prakash CS (2001) Evaluation of genetic relationships among botanical varieties of cultivated peanut (Arachis hypogaea L.) using AFLP markers. Gene Resour Crop Evol 48:347–353

    Article  Google Scholar 

  • Hendrix B, Stewart JM (2005) Estimation of the nuclear DNA content of Gossypium species. Ann Bot 95:789–797

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

    Article  Google Scholar 

  • Hilu KW, Stalker HT (1995) Genetic relationships between peanut and wild species of Arachis sect. Arachis (Fabaceae): evidence from RAPDs. Plant Syst Evol 198:167–178

    Article  CAS  Google Scholar 

  • Jakob SS, Meister A, Blattner FR (2004) The considerable genome size variation of Hordeum species (Poaceae) is linked to phylogeny, life form, ecology, and speciation rates. Mol Biol Evol 21:860–869

    Article  CAS  PubMed  Google Scholar 

  • Kochert G, Halward T, Branch WD, Simpson CE (1991) RFLP variability in peanut (Arachis hypogaea L.) cultivars and wild species. Theor Appl Genet 81:565–570

    Article  CAS  PubMed  Google Scholar 

  • Koppolu R, Upadhyaya HD, Dwivedi SL, Hoisington DA, Varshney RK (2010) Genetic relationships among seven sections of genus Arachis studied by using SSR markers. BMC Plant Biol 10:15

    Article  PubMed Central  PubMed  Google Scholar 

  • Krapovickas A, Gregory W (1994) Taxonomía del género Arachis (Leguminosae). Bonplandia 8:1–186

    Google Scholar 

  • Lavia GI (1996) Estudios cromosómicos en Arachis (Leguminosae). Bonplandia 9:111–120

    Google Scholar 

  • Lavia GI, Fernández A (2008) Genome size in wild and cultivated peanut germplasm. Plant Syst Evol 272:1–10

    Article  CAS  Google Scholar 

  • Leitch IJ, Bennett MD (2004) Genome downsizing in polyploid plants. Biol J Linn Soc 82:651–663

    Article  Google Scholar 

  • Loureiro J, Rodriguez E, Costa A, Santos C (2007) Nuclear DNA content estimations in wild olive (Olea europaea L. ssp. europaea var. sylvestris Brot.) and Portuguese cultivars of O. europaea using flow cytometry. Genet Resour Crop Evol 54:21–25

    Article  CAS  Google Scholar 

  • Lu J, Pickersgill B (1993) Isozyme variation and species relationships in peanut and its wild relatives (Arachis L.—Leguminosae). Theor Appl Genet 85:550–560

    Article  CAS  PubMed  Google Scholar 

  • MacGillivray CW, Grime JP (1995) Genome size predicts frost resistance in British herbaceous plants: implications for rates of vegetation response to global warming. Func Ecol 5:320–325

    Article  Google Scholar 

  • Milla SR, Isleib TG, Stalker HT (2005) Taxonomic relationships among Arachis sect. Arachis species as revealed by AFLP markers. Genome 48:1–11

    Article  CAS  PubMed  Google Scholar 

  • Moretzsohn MC, Hopkins MS, Mitchell SE, Kresovich S, Valls JFM, Ferreira ME (2004) Genetic diversity of peanut (Arachis hypogaea L.) and its wild relatives based on the analysis of hypervariable regions of the genome. BMC Plant Biol 4:11

    Article  PubMed Central  Google Scholar 

  • Moretzsohn MC, Gouvea EG, Inglis PW, Leal-Bertioli SCM, Valls JFM, Bertioli DJ (2013) A study of the relationships of cultivated peanut (Arachis hypogaea) and its most closely related wild species using intron sequences and microsatellite markers. Ann Bot 111:113–126

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Nandini AV, Murray BG (1997) Intra-and interspecific variation in genome size in Lathyrus (Leguminosae). Bot J Linn Soc 125:359–366

    Google Scholar 

  • Naranjo CA, Ferrari MR, Palermo AM, Poggio L (1998) Karyotype DNA content and meiotic behaviour in five South American species of Vicia (Fabaceae). Ann Bot 82:757–764

    Article  Google Scholar 

  • Nielen S, Campos- Fonseca F, Leal- Bertioli S, Guimaraes P, Seijo G, Town C, Arrial R, Bertioli D (2009) FIDEL—a retrovirus-like retrotransposon and its distinct evolutionary histories in the A- and B-genome components of cultivated peanut. Chrom Res 18:227–246

    Article  Google Scholar 

  • Nielen S, Vidigal B, Leal-Bertioli S, Ratnaparkhe M, Paterson A, Garsmeur O, D’Hont A, Guimarães P, Bertioli D (2011) Matita, a new retroelement from peanut: characterization and evolutionary context in the light of the Arachis A-B genome divergence. Mol Genet Genomics 287:21–38

    Article  PubMed  Google Scholar 

  • Ozias-Akins P, Jarret RL (1994) Nuclear DNA content and ploidy levels in the genus Ipomoea. J Am Soc Hortic Sci 119:110–115

    CAS  Google Scholar 

  • Peñaloza A, Valls JFM (2005) Chromosome number and satellite chromosome morphology of eleven species of Arachis (Leguminosae). Bonplandia 14:65–72

    Google Scholar 

  • Poggio L, Burghardt AD, Hunziker JH (1989) Nuclear DNA variation in diploid and polyploid taxa of Larrea (Zygophyllaceae). J Hered 63:321–328

    Article  Google Scholar 

  • Poggio L, Rosato M, Chiavarino AM, Naranjo C (1998) Genome size and environmental correlations in Maize (Zea mays ssp. mays, Poaceae). Ann Bot 82:107–115

    Article  Google Scholar 

  • Price HJ, Chambers KL, Bachmann K (1981) Geographic and ecological distribution of genomic DNA content variation in Microseris douglasii (Asteraceae). Bot Gaz 142:415–426

    Article  CAS  Google Scholar 

  • Raina SN, Srivastav PK, Rao SR (1986) Nuclear DNA variation in Tephrosia. Genetica 69:27–33

    Article  Google Scholar 

  • Rayburn AL, Auger JA (1990) Genome size variation in Zea mays spp mays adapted to different altitudes. Theor Appl Genet 79:470–474

    Article  CAS  PubMed  Google Scholar 

  • Rayburn AL, Biradar DP, Bullock DG, Nelson RL, Gourmet C, Wetzel JB (1997) Nuclear DNA content diversity in Chinese soybean introductions. Ann Bot 80:321–325

    Article  CAS  Google Scholar 

  • Resslar PM, Stucky JM, Miksche JP (1981) Cytophometric determination of the amount of DNA in Arachis (Leguminosae). Amer J Bot 68:149–153

    Article  CAS  Google Scholar 

  • Robledo G, Seijo JG (2008) Characterization of Arachis D genome using physical mapping of heterochromatic regions and rDNA loci by FISH. Genet Mol Biol 31:717–724

    Article  CAS  Google Scholar 

  • Robledo G, Seijo JG (2010) Species relationships among the wild B genome of Arachis species (section Arachis) based on FISH mapping of rDNA loci and heterochromatin detection: a new proposal for genome arrangement. Theor Appl Genet 121:1033–1046

    Article  PubMed  Google Scholar 

  • Robledo G, Lavia GI, Seijo G (2009) Species relations among wild Arachis species with the A genome as revealed by FISH mapping of rDNA loci and heterochromatin detection. Theor Appl Genet 118:1295–1307

    Article  CAS  PubMed  Google Scholar 

  • Schmidt T, Heslop- Harrison JS (1998) Genomes, genes and junk: the large-scale organization of plant chromosomes. Trends Plant Sci 3:195–199

    Article  Google Scholar 

  • Schwarzacher T, Ambros P, Schweizer D (1980) Application of Giemsa banding to orchid karyotype analysis. Plant Syst Evol 134:293–297

    Article  Google Scholar 

  • Seijo G, Lavia GI, Fernández A, Krapovickas A, Ducasse D, Moscone EA (2004) Physical mapping of 5S and 18S–25S rRNA genes evidences that Arachis duranensis and A. ipaënsis are the wild diploid species involved in the origin of A. hypogaea (Leguminosae). Am J Bot 91:2293–2303

    Article  Google Scholar 

  • Silvestri MC, Ortiz AM, Lavia GI (2014) rDNA loci and heterochromatin positions support a distinct genome type for ‘x = 9 species’ of section Arachis (Arachis. Plant Syst Evol, Leguminosae). doi:10.1007/s00606-014-1092-y

    Google Scholar 

  • Simpson CE (2001) Use of wild Arachis species/Introgression of genes into A. hypogaea L. Peanut Sci 28:114–116

    Article  CAS  Google Scholar 

  • Sims LE, Price HJ (1985) Nuclear DNA content variation in Helianthyus annus (Asteraceae). Am J Bot 72:1213–1219

    Article  Google Scholar 

  • Singh AK, Sivaramakrishman S, Mengesha MH, Ramaiah CD (1991) Phylogenetic relations in section Arachis based on seed protein profile. Theor Appl Genet 82:593–597

    CAS  PubMed  Google Scholar 

  • Singh KP, Raina SN, Singh AK (1996) Variation in chromosomal DNA associated with the evolution of Arachis species. Genome 39:890–897

    Article  CAS  PubMed  Google Scholar 

  • Stalker HT (1991) A new species- section Arachis of peanuts with D genome. Am J Bot 78:630–637

    Article  Google Scholar 

  • Stalker HT, Dhesi JS, Kochert G (1995) Genetic diversity within the species Arachis duranensis Krapov. & W.C. Gregory, a possible progenitor of cultivated peanut. Genome 38:1201–1212

    Article  CAS  PubMed  Google Scholar 

  • Subramanian V, Gurtu S, Rao RN, Nigam SN (2000) Identification of DNA polymorphism in cultivated groundnut using random amplified polymorphic DNA (RAPD) assay. Genome 43:656–660

    Article  CAS  PubMed  Google Scholar 

  • Tallury SP, Hilu KW, Milla SR, Friend SA, Alsaghir M, Stalker HT, Quandt D (2005) Genomic affinities in Arachis section Arachis (Fabaceae): molecular and cytogenetic evidence. Theor Appl Genet 111:1229–1237

    Article  CAS  PubMed  Google Scholar 

  • Temsch EM, Greilhuber J (2000) Genome size variation in Arachis hypogaea and A. monticola re-evaluated. Genome 43:449–451

    Article  CAS  PubMed  Google Scholar 

  • Temsch EM, Greilhuber J (2001) Genome size in Arachis duranensis: a critical study. Genome 44:826–830

    Article  CAS  PubMed  Google Scholar 

  • Vaio M, Mazzella C, Porro V, Speranza P, López-Carro B, Estramil E, Folle GA (2007) Nuclear DNA content in allopolyploid species and synthetic hybrids in the grass genus Paspalum. Plant Syst Evol 265:109–121

    Article  CAS  Google Scholar 

  • Valls JFM, Simpson CE (2005) New species of Arachis (Leguminosae) from Brazil, Paraguay and Bolivia. Bonplandia 14:35–63

    Google Scholar 

  • Wakamiya I, Newton RJ, Johnston SJ, Price JH (1993) Genome size and environmental factors in the genus Pinus. Am J Bot 80:1235–1241

    Article  Google Scholar 

  • Wendel JF, Cronn RC, Johnston JS, Price HJ (2002) Feast and famine in plant genomes. Genetica 115:37–47

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Agencia Nacional de Promoción Científica y Técnica, Argentina (PICT 2007 No. 1356 and PICT 2012 No. 1875). Sergio Sebastián Samoluk and Laura Chalup are fellows and Guillermo Seijo and Germán Robledo are members of the National Council for Scientific and Technological Research (CONICET), Argentina. We give thanks to INTA Manfredi Station (Córdoba, Argentina) and the Texas Agriculture Experimental Station (Stephenville, Texas, USA) for providing seeds of some accessions and to the Editor-in-Chief, Prof. Karl Hammer, and the anonymous reviewers whose suggestions greatly helped to improve the original manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Sebastián Samoluk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samoluk, S.S., Chalup, L., Robledo, G. et al. Genome sizes in diploid and allopolyploid Arachis L. species (section Arachis). Genet Resour Crop Evol 62, 747–763 (2015). https://doi.org/10.1007/s10722-014-0193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-014-0193-3

Keywords

Navigation