Skip to main content
Log in

Trait phenotyping and SSR markers characterization of wheat (Triticum aestivum L.) germplasm for breeding early maturing wheat’s for Western-Himalayas

  • Research Article
  • Published:
Genetic Resources and Crop Evolution Aims and scope Submit manuscript

Abstract

The study involved evaluation of 96 wheat genotypes for early maturity and related traits and molecular characterization of trait specific candidate genotypes using 26 (20 random and 6 genic) SSR markers. Trait characterization revealed significant variation for early maturity and other related traits. The analysis of genotypic data of 26 markers led to the detection of 166 alleles ranging from 2 to 8 alleles with an average of 3.8 alleles per locus. Separate analysis of genotypic data of 20 random and 06 trait specefic markers led to the identification of 118 and 51 alleles, respectively. Allelic diversity study in the two sub-populations i.e., early and late maturing populations detected a total of 167 and 144 alleles, respectively. Higher gene diversity was detected in early maturing sub-population (0.135) when compared to late maturing sub-population (0.071). Single marker analysis revealed significant association of 05 random (Xcfd31, Xcfd39, Xgwm148, Xgwm190 and Xgwm538) and 02 trait specific markers (Xwmc1 and Xgwm271) with early maturity. Therefore, two trait specific markers explaining 21.36% and 10.94% phenotypic variation (PVE%) respectively for early maturity are declared validated during the present study. Overall, the findings of the present study will prove useful in future wheat improvement programs aimed at developing early maturing wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Availability of data and material (data transparency)

The authors confirm that the data supporting the findings of this study are available within the article [and/or] its supplementary materials.

References

  • Abouzied HM, Eldemery SMM, Abdellatif KF (2013) SSR-based genetic diversity assessement in tetraploid and hexaploid wheat populations. British Biotechnol J 3:390–404

    Google Scholar 

  • Arya M, Jaiswal JP (2014) Characterization of wheat (Triticum aestivum L.) germplasm for yield and yield attributing traits. Indian J Plant Genet Resour 27(2):123–126

    Google Scholar 

  • Battenfield SD, Guzman C, Gaynor RC, Singh RP, Peña RJ, Dreisigacke S, Fritz AK, Poland JA (2016) Genomic selection for processing and end-use quality traits in the CIMMYT spring bread wheat breeding program. Plant Genome 9:1–12

    CAS  Google Scholar 

  • Bonnin I, Rousset M, Madur D, Sourdille P, Dupuits C, Brunel D, Goldringer I (2008) FT genome A and D polymorphisms are associated with the variation of earliness components in hexaploid wheat. Theor Appl Genet 116:383–394

    CAS  PubMed  Google Scholar 

  • Botstein D, White RL, Skolnick M, Davis RW (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32:314

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brown GR, Kadel EE III, Bassoni DL, Kiehne KL, Temesgen B, van Buijtenen JP, Sewell MM, Marshall KA, Neale DB (2001) Anchor reference loci in loblolly pine (Pinus taeda L.) for integrating pine genomics. Genetics 159:799–809

    CAS  PubMed  PubMed Central  Google Scholar 

  • Camargo Rodriguez AV, Mackay I, Mott R, Han J, Doonan J, Askew K, Bentley A (2018) Functional mapping of quantitative trait loci (QTLs) associated with plant performance in a wheat magic mapping population. Front Plant Sci 9:887

    Google Scholar 

  • Chen X, Min D, Yasir TA, Hu YG (2012) Genetic diversity population structure and linkage disequilibrium in elite Chinese winter wheat investigated with SSR markers. PLoS One 7:e44510

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christiansen MJ, Andersen SB, Ortiz R (2002) Diversity changes in an intensively bread wheat germplasm during the 20th century. Mol Breed 9:1–11

    Google Scholar 

  • Crain J, Mondal S, Rutkoski J, Singh RP, Poland J (2018) Combining high-throughput phenotyping and genomic information to increase prediction and selection accuracy in wheat breeding. The Plant Genome 11:1–14

    Google Scholar 

  • Daetwyler HD, Bansal UK, Bariana HS, Hayden MJ, Hayes BJ (2014) Genomic prediction for rust resistance in diverse wheat landraces. Theor Appl Genet 127:1795–1803

    CAS  PubMed  Google Scholar 

  • Donini P, Law JR, Koebner RMD, Reeves JC, Cooke RJ (2000) Temporal trends in the diversity of UK wheat. Theor Appl Genet 100:912–917

    Google Scholar 

  • Drikvand MR, Najafian G, Elham SA (2015) Investigation of genetic diversity of some durum and bread wheat genotypes using SSR markers. J Biodivers Environ Sci 6:24–32

    Google Scholar 

  • Federer WT (1961) (1961) Augmented designs with one way elimination of heterogeneity. Biometrics 17:447

    Google Scholar 

  • Goldringer I, Prouin C, Rousset M, Galic N, Bonnin I (2006) Rapid differentiation of experimental populations of wheat for heading time in response to local climatic conditions. Ann Bot 98:805–817

    PubMed  PubMed Central  Google Scholar 

  • Gomez D, Vanzetti L, Helguera M, Lombardo L, Fraschina J, Miralles DJ (2014) Effect of Vrn-1 Ppd-1 genes and earliness per se on heading time in Argentinean bread wheat cultivars. Field Crops Res 158:73–81

    Google Scholar 

  • Griffiths S, Simmonds J, Leverington M, Wang Y, Fish L, Sayers L, Faure S (2009) Meta-QTL analysis of the genetic control of ear emergence in elite European winter wheat germplasm. Theor Appl Genet 119:383–395

    CAS  PubMed  Google Scholar 

  • Guedira M, Maloney P, Xiong M, Petersen S, Murphy JP, Marshall D, Johnson J, Harrison S, Brown-Guedira G (2014) Vernalization duration requirement in soft winter wheat is associated with variation at the VRN-B1 locus. Crop Sci 54:1960–1971

    CAS  Google Scholar 

  • Guo Q, Zhang ZJ, Xu YB, Li GH, Feng J, Zhou Y (2008) Quantitative trait loci for high-temperature adult-plant and slow-rusting resistance to Puccinia striiformis f. sp. tritici in wheat cultivars. Phytopathology. 98(7):803–809

    CAS  PubMed  Google Scholar 

  • Guo XR, Wang YY, Meng LZ, Liu HW, Yang L, Zhou Y, Zhang HJ (2015) Distribution of the Vrn-D1b allele associated with facultative growth habit in Chinese wheat accessions. Euphytica 206:1–10

    Google Scholar 

  • Gupta PK, Balyan HS, Mir RR, Kumar J, Kumar A (2011) QTL analysis, association mapping and marker-assisted selection for some quality traits in bread wheat - An overview of the work lone at CCS University, Meerut. J Wheat Res 3:1–11

  • Gupta PK, Kumar J, Mir RR, Kumar A (2010a) Marker-assisted selection as a component of conventional plant breeding. Plant Breed Rev 33:145–217

    Google Scholar 

  • Gupta PK, Langridge P, Mir RR (2010b) Marker-assisted wheat breeding: present status and future possibilities. Mol Breed 26:145–161

    Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospectus. Special issue on genomics of major crops and model plant species. Int J Plant Genomics. https://doi.org/10.1155/2008/896451

  • Gupta PK, Rustgi S, Sharma S, Singh R, Kumar N, Balyan HS (2003) Transferable EST-SSR markers for the study of polymorphism and genetic diversity in bread wheat. Mol Genet Genom 270:315–323

    CAS  Google Scholar 

  • Gupta PK, Rustgi S, Mir RR (2013) Array-based high-throughput dna markers and genotyping platforms for cereal genetics and genomics. In: Gupta PK, Varshney RK (eds) Cereal genomics II. Springer, The Netherlands

    Google Scholar 

  • Hanocq E, Laperche A, Jamino O, Laine AL, Le Gouis J (2007) Most significant genome regions involved in the control of earliness traits in bread wheat as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    CAS  PubMed  Google Scholar 

  • Hanocq E, Laperche A, Jaminon O, Lainé AL, Le Gouis J (2006) Most significant genome regions involved in the control of earliness traits in bread wheat as revealed by QTL meta-analysis. Theor Appl Genet 114:569–584

    PubMed  Google Scholar 

  • Helguera M, Khan IA, Kolmer J, Lijavetzky D, Zhong-Qi L, Dubcovsky J (2003) PCR assays for the Lr37-Yr17-Sr38 cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci 43:1839–1847

    CAS  Google Scholar 

  • Hua W, Liu Z, Zhu J, Xie C, Yang T, Zhou Y, Liu Z (2009) Identification and genetic mapping of pm42, a new recessive wheat powdery mildew resistance gene derived from wild emmer (Triticum turgidum var. dicoccoides). Theor. Appl. Genet. 119(2):223–230

    CAS  PubMed  Google Scholar 

  • Huang XQ, Börner A, Röder MS, Ganal MW (2002) Assessing genetic diversity of wheat (Triticum aestivum L.) germplasm using microsatellite markers. Theor Appl Genet 105:699–707

    CAS  PubMed  Google Scholar 

  • Huang XQ, Wolf M, Ganal MW, Orford S, Koebner RMD, Röder MS (2007) Did modern plant breeding lead to genetic erosion in European winter wheat varieties? Crop Sci 47:343–349

    CAS  Google Scholar 

  • Hysing SC, Säll T, Nybom H, Liljeroth E, Merker A, Orford S, Koebner RM (2008) Temporal diversity changes among 198 Nordic bread wheat landraces and cultivars detected by retro-transposon-based S-SAP analysis. Plant Genet Resour 6:113–125

    CAS  Google Scholar 

  • Jaiswal JP (2015) Genetic diversity analysis in exotic germplasm accessions of bread wheat (Triticum aestivum L.) by cluster analysis. Electron. J. Plant Breed. 6(4):1111–1117

    Google Scholar 

  • Jaiswal V, Gahlaut V, Meher PK, Mir RR, Jaiswal JP, Rao AR, Balyan HS, Gupta PK (2016) Genome wide single locus single trait, multi-locus and multi-trait association mapping for some important agronomic traits in common wheat (T. aestivum L.). PloS One 11(7):e0159343

    PubMed  PubMed Central  Google Scholar 

  • Jan S, Jan S, Khan MN, Jan S, Zaffar A, Rashid R, Khan MA, Sheikh FA, Bhat MA, Mir RR (2021) Trait phenotyping and molecular marker characterization of barley (Hordeum vulgare L.) germplasm from Western Himalayas. Genet Resour Crop Evol. https://doi.org/10.1007/s10722-021-01251-z

    Article  Google Scholar 

  • Joshi AK, Mishra B, Chatrath R, Ferrara GO, Singh RP (2007) Wheat improvement in India: present status emerging challenges and future prospects. Euphytica 157:431–446

    Google Scholar 

  • Kamran A, Iqbal M, Navabi A, Randhawa H, Pozniak C, Spaner D (2013) Earliness per se QTLs and their interaction with the photoperiod insensitive allele Ppd-D1a in the cutler 3 AC barrie spring wheat population. Theor Appl Genet 126:1965–1976

    CAS  PubMed  Google Scholar 

  • Kato K, Yamagata H (1988) Method for evaluation of chilling requirement and narrow-sense earliness of wheat cultivars. J.P.N. J Breed 38:172–186

    Google Scholar 

  • Kiseleva AA, Shcherban AB, Leonova IN, Frenkel Z, Salina EA (2016) Identification of new heading date determinants in wheat 5B chromosome. BMC Plant Biol 16:8

    PubMed  PubMed Central  Google Scholar 

  • Kuchel H, Hollamby G, Langridge P, Williams K, Je Veries SP (2006) Identification of genetic loci associated with ear-emergence in bread wheat. Theor Appl Genet 113:1103–1112

    CAS  PubMed  Google Scholar 

  • Kumar A, Jain S, Elias EM, Ibrahim M, Sharma LK (2018) An overview of QTL identification and marker-assisted selection for grain protein content in wheat. In: Rakesh SS, Ashu S (eds) Eco-friendly agro-biological techniques for enhancing crop productivity. Springer, Singapore, pp 245–274

    Google Scholar 

  • Kumar J, Kumar N, Kumar A, Mir RR, Kumar S, Kumar R, Jaiswal V, Tyagi S, Prabhu KV, Balyan HS, Gupta PK (2011) Introgression of a major gene for high grain protein content in some Indian bread wheat cultivars. Field Crops Res 123:226–233. https://doi.org/10.1016/j.fcr.2011.05.013

    Article  Google Scholar 

  • Kumar S, Kumar V, Kumari P, Kirti Singh AK, Singh R (2016) DNA fingerprinting and genetic diversity studies in wheat genotypes using SSR markers. J Environ Biol 37:319–326

    CAS  Google Scholar 

  • Kumar S, Kumar M, Mir RR, Kumar R, Kumar S (2021) Advances in molecular markers and their use in genetic improvement of wheat. In Wani SH, Mohan A, Singh GP (eds) Physiological molecular and genetic perspectives of wheat improvement, Springer, Cham, pp 139–174.

  • Kumar J, Mir RR, Kumar N, Kumar A, Mohan A, Prabhu KV, Balyan HS, Gupta PK (2010) Marker assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breed 129:617–621

    CAS  Google Scholar 

  • Kumari RR Mir, Tyagi S, Balyan HS, Gupta PK (2019) Validation of QTL for grain weight using MAS-derived pairs of NILs in bread wheat (Triticum aestivum L.). J Plant Biochem Biotech 28(3):336–344

    Google Scholar 

  • Le Gouis J, Bordes J, Ravel C, Heumez E, Faure S, Praud S, Galic N, Remoue C, Balfourier F, Allard V, Rousset M (2012) Genome-wide association analysis to identify chromosomal regions determining components of earliness in wheat. Theor Appl Genet 124:597–611

    PubMed  Google Scholar 

  • Li F, Wen W, He Z, Liu J, Jin H, Cao S, Xia X (2018) Genome-wide linkage mapping of yield-related traits in three Chinese bread wheat populations using high-density SNP markers. Theor Appl Genet 131:1903–1924

    PubMed  Google Scholar 

  • Maccaferri M, Sanguineti MC, Noli E, Tuberosa R (2005) Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Mol Breed 15:271–289

    CAS  Google Scholar 

  • Manickavelu A, Jighly A, Ban T (2014) Molecular evaluation of orphan Afghan common wheat (Triticum aestivum L.) landraces collected by Dr Kihara using single nucleotide polymorphic markers. BMC Plant Biol 14:320

    PubMed  PubMed Central  Google Scholar 

  • Mir RR, Choudhary N, Bawa V, Jan S, Singh B, Bhat MA, Paliwal R, Gupta A, Chitikineni A, Thudi M, Varshney RK (2021) Allelic diversity, structural analysis and genome-wide association study (GWAS) for yield and related traits using unexplored common bean (Phaseolus vulgaris L.) Germplasm from Western Himalayas. Front Genet 11:1797. https://doi.org/10.3389/fgene.2020.609603

    Article  CAS  Google Scholar 

  • Mir RR, Hiremath PJ, Riera-Lizarazu O, Varshney RK (2013) Evolving molecular marker technologies in plants: from RFLPs to GBS. In: Lübberstedt T, Varshney RK (eds) Diagnostics in plant breeding. Springer Science+Business, New York, pp 229–247

    Google Scholar 

  • Mir RR, Kumar J, Balyan HS, Gupta PK (2012a) A study of genetic diversity among Indian bread wheat (Triticum aestivum L.) cultivars released during last 100 years. Genet Resour Crop Evol 59:717–726

    CAS  Google Scholar 

  • Mir RR, Kumar N, Jaiswal V, Girdharwal N, Prasad M, Balyan HS, Gupta PK (2012b) Genetic dissection of grain weight in bread wheat through quantitative trait locus interval and association mapping. Mol Breed 29:963–972

    Google Scholar 

  • Mir RR, Varshney RK (2013) Future prospects of molecular markers in plants. In: Henry RJ (ed) Molecular markers in plants. Blackwell Publishing Ltd, Oxford, UK, pp 169–190

    Google Scholar 

  • Mohan A, Kulwal PL, Singh R, Kumar V, Mir RR, Kumar J, Prasad M, Balyan HS, Gupta PK (2009) Genome wide QTL analysis for pre-harvest sprouting tolerance in bread wheat. Euphytica 168:319–329

    CAS  Google Scholar 

  • Mondal S, Singh RP, Masonb ER, Espinoa JH, Autriquea E, Joshi AK (2016) Grain yield adaptation and progress in breeding for early-maturing and heat-tolerant wheat lines in South Asia. Field Crops Res 192:78–85

    CAS  PubMed  PubMed Central  Google Scholar 

  • Peakall ROD, Smouse PE (2006) GENALex 6: genetic analysis in excel population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Perrier X, Flori A, Bonnot F (2003) Data analysis methods In: Genetic diversity of cultivated tropical plants Enfield: Science Publishers pp 43–76.

  • Perrier X, Jacquemoud-Collet JP (2006) DARwin software v 60010.

  • PPV and FRA Descriptor (2007) https://www.plantauthority.gov.in/

  • Putterill J, Laurie R, Macknight R (2004) It’s time to flower: the genetic control of flowering time. BioEssays 26:363–373

    CAS  PubMed  Google Scholar 

  • Qureshi N, Bariana HS, Zhang P, McIntosh R, Bansal UK, Wong D, Shankar M (2018) Genetic relationship of stripe rust resistance genes Yr34 and Yr48 in wheat and identification of linked KASP markers. Plant Dis 102:413–420

    CAS  PubMed  Google Scholar 

  • Rathore A, Prasad R, Gupta V (2004) Computer aided construction and analysis of augmented designs. J Ind Soc Ag statistics 57:320–344

  • Reif JC, Zhang P, Dreisigacher S, Warburton ML, Ginkel MV, Hoisington D, Bohn M, Melchinger AE (2005) Wheat genetic diversity trends during domestication and breeding. Theor Appl Genet 110:859–864

    CAS  PubMed  Google Scholar 

  • Roussel V, Koenig J, Beckert M, Balfourier F (2004) Molecular diversity in French bread wheat accessions related to temporal trends and breeding programmes. Theor Appl Genet 108:920–930

    CAS  PubMed  Google Scholar 

  • Saghai-Maroof MA, Soliman KM, Jorgensen RA, Allard RW (1984) Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance chromosomal location and population dynamic. PNAS USA 81:8014–8019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. 2nd edn. Cold spring harbor laboratory press

  • Sharma R, Choudhary PC (2014) Improvement in wheat productivity through frontline demonstrations. Ind J Extn Educ RD 22:36–41

    Google Scholar 

  • Somers DJ, Isaac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    CAS  PubMed  Google Scholar 

  • Sourdille P, Snape JW, Cadalen T, Charmet G, Nakata N, Bernard S, Bernard M (2000) Detection of QTLs for heading time and photoperiod response in wheat using a doubled-haploid population. Genome 43:487–494

    CAS  PubMed  Google Scholar 

  • Sukumaran S, Lopes MS, Dreisigacker S, Dixon LE, Zikhali M, Griffiths S, Zheng B, Chapman S, Reynolds MP (2016) Identification of earliness per se flowering time locus in spring wheat through a genome-wide association study. Crop Sci 56:2962–2972

    CAS  Google Scholar 

  • Tahir M, Shafi S, Khan MA, Sheikh FA, Bhat MA, Sofi PA, Kumar S, Wani MA, Mir RR (2021) Grain micronutrient and molecular characterization of wheat (Triticum aestivum L.) germplasm using genic and random SSR Markers. Crop Pasture Sci. https://doi.org/10.1071/CP21116

    Article  Google Scholar 

  • Tewolde H, Fernandez CJ, Erickson CA (2006) Wheat cultivars adapted to post-heading high temperature stress. J Agron Crop Sci 192:111–120

    Google Scholar 

  • Tiwari VK, Rawat N, Chhuneja P, Neelam K, Aggarwal R, Randhawa GS, Singh K (2009) Mapping of quantitative trait loci for grain iron and zinc concentration in diploid a genome wheat. J Hered 100(6):771–776

    CAS  PubMed  Google Scholar 

  • Tyagi S, Kumar A, Gautam T, Pandey R, Rustgi S, Mir RR (2021) Development and use of miRNA-derived SSR markers for the study of genetic diversity population structure and characterization of genotypes for breeding heat tolerant wheat varieties. PLoS One 16(2):e0231063

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tyagi S, Mir RR, Balyan HS, Gupta PK (2014) Interval mapping and meta-QTL analysis of grain traits in common wheat (Triticum aestivum L.). Euphytica 201(3):367–380

    Google Scholar 

  • Tyagi S, Mir RR, Kaur H, Chhuneja P, Ramesh B, Balyan HS, Gupta PK (2014) Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (Triticum aestivum L.). Mol Breed 34(1):167–175

    CAS  Google Scholar 

  • Tyagi S, Sharma S, Ganie SA, Tahir M, Mir RR, Pandey R (2019) Plant microRNAs: biogenesis, gene silencing, web-based analysis tools and their use as molecular markers. Biotech 9(11):413

    Google Scholar 

  • van Beem J, Mohler V, Lukman R, van Ginkel M, William M, Crossa J, Worland AJ (2005) Analysis of genetic factors influencing the developmental rate of globally important CIMMYT wheat cultivars. Crop Sci 45:2113–2119

    Google Scholar 

  • Van De Wouw M, Van Hintum T, Kik C, Van Treuren R, Visser B (2010) Genetic diversity trends in twentieth century crop cultivars: a meta-analysis. Theor Appl Genet 120:1241–1252

    PubMed  PubMed Central  Google Scholar 

  • Warburton ML, Crossa J, Franco J, Kazi M, Trethowan R, Rajaram S, Pfeiffer W, Zhang P, Dreisigacker S, Ginkel MV (2006) Bringing wild relatives back to the family: recovering genetic diversity in CIMMYT improved wheat germplasm. Euphytica 149:289–301

    CAS  Google Scholar 

  • Weller JL, Ortega R (2015) Genetic control of flowering time in legumes. Front Plant Sci 6:207

    PubMed  PubMed Central  Google Scholar 

  • Williams K, Taylor S, Bogacki P, Pallotta M, Bariana H, Wallwork H (2002) Mapping of the root lesion nematode (Pratylenchus neglectus) resistance gene Rlnn1 in wheat. Theor Appl Genet 104:874–879

    CAS  PubMed  Google Scholar 

  • Zanke C, Ling J, Plieske J, Kollers S, Ebmeyer E, Korzun V, Argillier O, Stiewe G, Hinze M, Beier S, Gana MW, Röder MS (2014) Genetic architecture of main effect QTL for heading date in European winter wheat. Plant Sci 5:1

    Google Scholar 

  • Zhang D, Bai G, Zhu C, Yu J, Carver BF (2010) Genetic diversity population structure and linkage disequilibrium in US elite winter wheat. The Plant Genome 3:117–127

    CAS  Google Scholar 

  • Zhang P, Dreisigacker S, Buerkert A, Alkhanjari S, Melchinger AE, Warburton ML (2006) Genetic diversity and relationships of wheat landraces from Oman investigated with SSR markers. Genet Resour Crop Evol 53:1351–1360

    Google Scholar 

  • Zikhali M, Griffiths S (2015) The effect of Earliness per se (Eps) genes on flowering time in bread wheat In advances in wheat genetics: from genome to field proceedings of the 12th international wheat genetics symposium pp 339–345.

Download references

Acknowledgements

The authors are thankful to Indian Institute of Wheat and Barley Research (IIWBR), Karnal, Haryana India, CIMMYTs Borlaug Institute for South Asia (BISA), Ludhiana, India for providing germplasm to carry out this research. The authors are highly thankful to Dean Faculty of Agriculture, SKUAST-K, and Head Division of Genetics and Plant Breeding, Faculty of Agriculture, SKUAST-K, for providing different facilities during the study.

Funding

This study was not funded by any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reyazul Rouf Mir.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 17 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shafi, S., Tahir, M., Khan, M.A. et al. Trait phenotyping and SSR markers characterization of wheat (Triticum aestivum L.) germplasm for breeding early maturing wheat’s for Western-Himalayas. Genet Resour Crop Evol 69, 755–770 (2022). https://doi.org/10.1007/s10722-021-01261-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10722-021-01261-x

Keywords

Navigation