Skip to main content
Log in

Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

Carbon nanoparticles attract attention of plant researchers as a possible means of improving crop yield and its quality. There are grounds to believe that the beneficial influence of polyhydroxy fullerene (PHF) on plants is due to its antioxidant activity, but the mechanism of its action on their growth and development remains unclear. Our study shows that PHF added to the nutrient medium accelerates barley roots elongation owing to the increase of their longitudinal extensibility in the growth zone. The impact of PHF on root growth was much more pronounced under the action of stressors inducing the accumulation of reactive oxygen species, such as UV-B radiation, salt stress and the excess of salicylic acid. Dichlorofluorescein assay showed that PHF prevented oxidative stress development and subapical root swelling after UV-B irradiation of roots. The conclusion is drawn that the important reason of root growth acceleration in the presence of PHF is its ability to serve as a scavenger of free radicals. That’s why it may be especially useful for the improvement of plant growth under environmental stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andreev I, Petrukhina A, Garmanova A, Babakhin A, Andreev S, Romanova V, Troshin P, Troshina O, DuBuske L (2008) Penetration of fullerene C60 derivatives through biological membranes. Fuller Nanotub Carbon Nanostruct 16:89–102

    Article  CAS  Google Scholar 

  • Aslani F, Bagheri S, Julkapli NM, Juraimi ASh, Hashemi FSG, Baghdadi A (2014) Effects of engineered nanomaterials on plants growth. Sci World J ID. doi:10.1155/2014/641759

    Google Scholar 

  • Bennett MD, Finch RA (1972) The mitotic cycle time of root meristem cells of Hordeum vulgare. Caryologia Int J Cytol Cytosyst Cytogen 25:439–444

    Google Scholar 

  • Caldwell MM (1981) Plant response to solar ultraviolet radiation. In: Lange OL et al (eds) Encyclopedia of plant physiology, physiological plant ecology 1: Responses to the Physical Environment, vol 12A. Springer, Heidelberg, pp 169–197

    Google Scholar 

  • Chen Z, Silva H, Klessig DF (1993) Active oxygen species in the induction of plant systemic acquired resistance by salicylic acid. Science 262:1883–1886

    Article  CAS  PubMed  Google Scholar 

  • Chen R, Ratnikova TA, Stone MB, Lin S, Lard M, Huang G, Hudson JS, Ke PC (2010) Differential uptake of carbon nanoparticles by plant and mammalian cells. Small 6:612–617

    Article  CAS  PubMed  Google Scholar 

  • Cosgrove DJ (1997) Relaxation in a high-stress environment: the molecular basis of extensible cell walls and cell enlargement. Plant Cell 9:1031–1041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • De Cnodder T, Vissenberg K, Van Der Straeten D, Verbelen JP (2005) Regulation of cell length in the Arabidopsis thaliana root by the ethylene precursor 1-aminocyclopropane-1-carboxylic acid: a matter of apoplastic reactions. New Phytol 168:541–550

    Article  PubMed  Google Scholar 

  • de Vries H (1877) Untersuchungen über die mechanischen Ursachen der Zellstreckung, ausgehend von der Einwirkung von Salzlösungen auf den Turgor wachsender Pflanzenzellen. Wilhelm Engelmann, Leipzig

  • Dugan LL, Turetsky DM, Du C, Lobner D, Wheeler M, Almli CR, Shen CK-F, Luh T-Y, Choi DW, Lin T-S (1997) Carboxyfullerenes as neuroprotective agents. Proc Natl Acad Sci USA 94:9434–9439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dugan LL, Lovett EG, Quick KL, Lotharius J, Lin TT, O’Malley KL (2001) Fullerene-based antioxidants and neurodegenerative disorders. Parkinsonism Relat Disord 7:243–246

    Article  PubMed  Google Scholar 

  • Durner J, Klessig DF (1995) Inhibition of ascorbate peroxidase by salicylic acid and 2,6-dichloroisonicotinic acid, two inducers of plant defense responses. Proc Natl Acad Sci USA 92:11312–11316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frohnmeyer H, Staiger D (2003) Ultraviolet-B radiation-meditated responses in plants. Balancing Damage and protection. Plant Physiol 133:1420–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao J, Wang Y, Folta KM, Krishna V, Bai W, Ingeglia P, Georgieva A, Nakamura H, Koopman B, Moudgil B (2011) Polyhydroxy fullerenes (PHFs or fullerenols): beneficial effects on growth and lifespan in diverse biological models. PLoS ONE 6(5):e19976. doi:10.1371/journal.pone.0019976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gharbi N, Pressac M, Hadchouel M, Szwarc H, Wilson SR, Moussa F (2005) Fullerene is a powerful antioxidant in vivo with no acute or subacute toxicity. Nano Lett 5:2578–2585

    Article  CAS  PubMed  Google Scholar 

  • Grzesiak M, Filek M, Barbasz A, Kreczmer B, Hartikainen H (2013) Relationships between polyamines, ethylene, osmoprotectants and antioxidant enzymes activities in wheat seedlings after short-term PEG- and NaCl-induced stresses. Plant Growth Regul 69:177–189. doi:10.1007/s10725-012-9760-9

    Article  CAS  Google Scholar 

  • Husen A, Siddigi KS (2014) Carbon and fullerene nanomaterials in plant system. J Nanobiotechnol 12:16–26

    Article  Google Scholar 

  • Ivanov VB (2011) Using the roots as test objects for the assessment of biological action of chemical substances. Russ J Plant Physiol 58:1082–1089

    Article  CAS  Google Scholar 

  • Janicka-Russak M, Kabała K, Wdowikowska A, Kłobus G (2013) Modification of plasma membrane proton pumps in cucumber roots as an adaptation mechanism to salt stress. J Plant Physiol 170:915–922

    Article  CAS  PubMed  Google Scholar 

  • Johansson I, Karisson M, Shulka VK, Chrispeels MJ, Larsson C, Kjellbom P (1998) Water transport activity of the plasma memrane aquaporin PM28A is regulated by puosphorylation. Plant Cell 10:451–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khodakovskaya M, Dervishi E, Mahmood M, Yang X, Li Z, Fumiya W, Biris A (2009) Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3:3221–3227

    Article  CAS  PubMed  Google Scholar 

  • Kole C, Kole P, Randunu KM, Choudhary P, Podila R, Ke PC, Rao AM, Marcus RK (2013) Nanobiotechnology can boost crop production and quality: first evidence from increased plant biomass, fruit yield and phytomedicine content in bitter melon (Momordica charantia). BMC Biotechnol 13:37–58

    Article  PubMed  PubMed Central  Google Scholar 

  • Ktitorova IN, Skobeleva OV, Sharova EI, Ermakov EI (2002) Hydrogen peroxide appears to mediate a decrease in hydraulic conductivity in wheat roots under salt stress. Russ J Plant Physiol 49:369–380

    Article  CAS  Google Scholar 

  • Ktitorova IN, Skobeleva OV, Kanash EV, Bilova TE, Sharova EI (2006a) Causes of root growth retardation induced by ultraviolet-B irradiation of shoots of barley seedlings. Russ J Plant Physiol 53:85–95

    Article  CAS  Google Scholar 

  • Ktitorova IN, Demchenko NP, Kalimova IB, Demchenko KN, Skobeleva OV (2006b) Cellular analysis of UV-B-induced barley root subapical swelling. Russ J Plant Physiol 53:824–836

    Article  CAS  Google Scholar 

  • Ktitorova IN, Skobeleva OV, Agaltsov KG (2012) Biophysical parameters as informative tools for elucidating the causes of root growth retardation under stressful conditions. Russ J Plant Physiol 59:118–126

    Article  Google Scholar 

  • Kvaratskhelia M, George SJ, Thorneley RN (1997) Salicylic acid is a reducing substrate and not an effective inhibitor of ascorbate peroxidase. J Biol Chem 272:20998–21001

    Article  CAS  PubMed  Google Scholar 

  • Lawaczek R, Fitterich H (1988) Pathways of water through erythrocyte membranes. Routes along defect structures. J Theor Biol 135:401–407

    Article  Google Scholar 

  • Maurel C (1997) Aquaporins and water permeability of plant membranes. Annu Rev Plant Physiol Plant Mol Biol 48:399–429

    Article  CAS  PubMed  Google Scholar 

  • Mori IC, Schroeder JI (2004) Reactive Oxygen Species Activation of Plant Ca2+ Channels. A signalling mechanism in polar growth, hormon transduction, stress signalling, and hypothetically mechanotransduction. Plant Physiol 135:702–708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair R, Varghese SH, Nair BG, Maekawa T, Yoshida Y, Kumar DS (2010) Nanoparticulate material delivery to plants. Plant Sci 179:154–163

    Article  CAS  Google Scholar 

  • Naydov IA, Mudrik VA, Ivanov BN (2010) Light-induced hydrogen peroxide dynamics in protoplasts from leaves of both wild-type Arabidopsis and its mutant deficient in ascorbate biosynthesis. Dokl Biochem Biophys 432:137–140

    Article  CAS  PubMed  Google Scholar 

  • Neumann PM (1995) Inhibition of root growth by salinity stress: toxicity or an adaptive biophysical response? In: Baluška F et al (eds) Structure and function of roots. Kluwer Academic Publishers, Dordrecht, pp 299–304

    Chapter  Google Scholar 

  • Peters WS, Farm MS, Kopf AJ (2001) Does growth correlate with turgor-induced elastic strain in stems? a reevaluation of de Vries’ classical experiments. Plant Physiol 125:2173–2179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Piotrovsky LB, Eropkin MYu, Eropkina EM, Dumpis MA, Kiselev OI (2007) Mechanisms of biologic action of fullerenes—dependence on aggregate state. Psychopharmacol Biol Narcol 7:1548–1554

    Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  CAS  PubMed  Google Scholar 

  • Rico CM, Majumdar S, Duarte-Gardea M, Peralta-Videa JR, Gardea-Torresdey JL (2011) Interaction of nanoparticles with edible plants and their possible implications in the food chain. J Agric Food Chem 59:3485–3498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rivas-San Vicente M, Plasencia J (2011) Salicylic acid beyond defence: its role in plant growth and development. J Exp Bot 62:3321–3338. doi:10.1093/jxb/err031

    Article  CAS  PubMed  Google Scholar 

  • Schopfer P, Plachy C, Frahry G (2001) Release of reactive oxygen intermediates (superoxide radicals, hydrogen peroxide, and hydroxyl radicals) and peroxidase in germinating radish seeds controlled by light, gibberellin, and abscisic acid. Plant Physiol 125:1591–1602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott IM, Clarke SM, Wood JE, Mur LA (2004) Salicylate accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiol 135:1040–1049. doi:10.1104/pp.104.041293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semenov KN, Charykov NA, Keskinov VN (2011) Fullerenol synthesis and identification. Properties of the fullerenol water solutions. J Chem Eng Data 56:230–239

    Article  CAS  Google Scholar 

  • Shalata A, Neumann PM (2001) Exogenous ascorbic acid (vitamin C) increases resistance to salt stress and reduces lipid peroxidation. J Exp Bot 52:2207–2211

    CAS  PubMed  Google Scholar 

  • Shim IS, Momose Y, Yamamoto A, Kim DW, Usui K (2003) Inhibition of catalase activity by oxidative stress and its relationship to salicylic acid accumulation in plants. Plant Growth Regul 39:285–292

    Article  CAS  Google Scholar 

  • Sivaguru M, Pike Sh, Gassmann W, Baskin TI (2003) Aluminium rapidly depolymerizes cortical microtubules and depolarizes the plasma membrane: evidence that these responses are mediated by a glutamate receptor. Plant Cell Physiol 44:667–675

    Article  CAS  PubMed  Google Scholar 

  • Skobeleva OV, Ktitorova IN, Agal’tsov KG (2011) The causes for barley root growth retardation in the presence of ammonium and glutamate. Russ J Plant Physiol 58:307–315

    Article  CAS  Google Scholar 

  • Takahashi H, Kawahara A, Inoue Y (2003) Ethylene promotes the induction by auxin of the cortical microtubule randomization required for low-pH-induced root hair initiation in lettuce (Lactica sativa L.) seedlings. Plant Cell Physiol 44:932–940

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63:279–290

    Article  CAS  Google Scholar 

  • Yin JJ, Lao F, Vehg J, Fu PP, Zhao YL et al (2008) Inhibition of tumor growth by endohedral metallofullerenol nanoparticles optimized as reactive oxygen species scavenger. Mol Pharmacol 74:1132–1140

    Article  CAS  PubMed  Google Scholar 

  • Zha YY, Yang B, Tang ML, Guo QC, Chen JT, Wen LP, Wang M (2012) Concentration-dependent effects of fullerenol on cultured hippocampal neuron viability. Int J Nanomed 7:3099–3109. doi:10.2147/IJN.S30934

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Skobeleva.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panova, G.G., Ktitorova, I.N., Skobeleva, O.V. et al. Impact of polyhydroxy fullerene (fullerol or fullerenol) on growth and biophysical characteristics of barley seedlings in favourable and stressful conditions. Plant Growth Regul 79, 309–317 (2016). https://doi.org/10.1007/s10725-015-0135-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-015-0135-x

Keywords

Navigation