Skip to main content
Log in

Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress

  • Original paper
  • Published:
Plant Growth Regulation Aims and scope Submit manuscript

Abstract

C-repeat binding factors (CBFs) are involved in multiple pathways of plant growth, development and stress responses. In this study, CsCBF3, a gene encoding a polypeptide of 274 amino acids and containing the structural feature of AP2 domain in CBF protein family, was characterized from tea plant [Camellia sinensis (L.) O. Kuntze]. CsCBF3 was located in cell nucleus and cytoplasm by subcellular localization analysis. Expression analysis revealed that CsCBF3 was induced by low temperature stress, abscisic acid and drought treatment in tea leaves. CsCBF3 overexpressed Arabidopsis displayed higher tolerance to cold stress and improved photosynthesis ability with less damage under cold condition compared to wild type plants. Furthermore, it was observed that the CsCBF3 gene regulates the expressions of downstream genes of cold responsive pathway, such as AtCOR15a and AtCOR78. These results indicate that CsCBF3 plays an important role in responding to cold stress and provide potential applications in molecular breeding to enhance cold tolerance in tea plant.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Badawi M, Danyluk J, Boucho B, Houde M, Sarhan F (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genom 277(5):533–554

    Article  CAS  Google Scholar 

  • Bates L, Waldren R, Teare I (1973) Rapid determination of free proline for water-stress studies. Plant Soil 39(1):205–207

    Article  CAS  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu J-K (2007) Cold stress regulation of gene expression in plants. Trends Plant Sci 12(10):444–451. doi:10.1016/j.tplants.2007.07.002

    Article  CAS  PubMed  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16(6):735–743

    Article  CAS  PubMed  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. PNAS 101(42):15243–15248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He L, Wang H, Liu D, Zhao Y, Xu M, Zhu M, Wei G, Sun Z (2012) Isolation and expression of a cold-responsive gene PtCBF in Poncirus trifoliata and isolation of citrus CBF promoters. Biol Plant 56(3):484–492

    Article  CAS  Google Scholar 

  • Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K (2004) A combination of the Arabidopsis DREB1A gene and stress-inducible rd29A promoter improved drought- and low-temperature stress tolerance in tobacco by gene transfer. Plant Cell Physiol 45(3):346–350

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Zarka DG, Okamoto H, Thomashow MF, Knight MR (2004) Abscisic acid induces CBF gene transcription and subsequent induction of cold-regulated genes via the CRT promoter element. Plant Physiol 135(3):1710–1717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang M, Chen D, Lin M, Zheng Q, Huang Z, Lin Z, Zhao G (2014) Isolation and characterization of two DREB1 genes encoding dehydration-responsive element binding proteins in chicory (Cichorium intybus). Plant Growth Regul 73(1):45–55

    Article  CAS  Google Scholar 

  • Medina Jn, Bargues M, Terol J, Pérez-Alonso M, Salinas J (1999) The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119(2):463–470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miura K, Jin JB, Lee J, Yoo CY, Stirm V, Miura T, Ashworth EN, Bressan RA, Yun D-J, Hasegawa PM (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19(4):1403–1414. doi:10.1105/tpc.106.048397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nada RM, Abogadallah GM (2015) Developmental acquisition of salt tolerance in the halophyte Atriplex halimus L. is related to differential regulation of salt inducible genes. Plant Growth Regul 75(1):165–178

    Article  CAS  Google Scholar 

  • Nakamura T, Yazaki J, Kishimoto N, Kikuchi S, Robertson AJ, Gusta LV, Ishikawa M (2013) Comparison of long-term up-regulated genes during induction of freezing tolerance by cold and ABA in bromegrass cell cultures revealed by microarray analyses. Plant Growth Regul 71(2):113–136

    Article  CAS  Google Scholar 

  • Oakenfull RJ, Baxter R, Knight MR (2013) A C-repeat binding factor transcriptional activator (CBF/DREB1) from European bilberry (Vaccinium myrtillus) induces freezing tolerance when expressed in Arabidopsis thaliana. PLoS ONE 8(1):e54119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AF (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339(1):62–66

    Article  CAS  PubMed  Google Scholar 

  • Schreiber U, Bilger W, Neubauer C (1995) Chlorophyll fluorescence as a nonintrusive indicator for rapid assessment of in vivo photosynthesis. In: Ecophysiology of photosynthesis, Springer, Heidelberg, pp 49–70

  • Sharabi-Schwager M, Lers A, Samach A, Guy CL, Porat R (2010) Overexpression of the CBF2 transcriptional activator in Arabidopsis delays leaf senescence and extends plant longevity. J Exp Bot 61(1):261–273

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K, Seki M (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 6(5):410–417. doi:10.1016/S1369-5266(03)00092-X

    Article  CAS  PubMed  Google Scholar 

  • Song J, Liu Q, Hu B, Wu W (2015) Comparative transcriptome profiling of Arabidopsis Col-0 in responses to heat stress under different light conditions. Plant Growth Regul. 1–10. doi:10.1007/s10725-015-0126-y

  • Thomashow MF (1998) Role of cold-responsive genes in plant freezing tolerance. Plant Physiol 118(1):1–8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Biol 50(1):571–599

    Article  CAS  Google Scholar 

  • Wang Y, Jiang C-J, Li Y-Y, Wei C-L, Deng W-W (2012) CsICE1 and CsCBF1: two transcription factors involved in cold responses in Camellia sinensis. Plant Cell Rep 31(1):27–34

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Wang F, Zheng F, Wang L, Pei H, Dong C-H (2015) Ethylene-insensitive mutants of Nicotiana tabacum exhibit drought stress resistance. Plant Growth Regul. 1–11. doi:10.1007/s10725-015-0116-0

  • Welling A, Palva ET (2008) Involvement of CBF transcription factors in winter hardiness in birch. Plant Physiol 147(3):1199–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woffelman C (2004) DNAMAN for Windows, Version 5.2. 10. Lynon Biosoft, Institute of Molecular Plant Sciences, Netherlands: Leiden University

  • Xiao H, Siddiqua M, Braybrook S, Nassuth A (2006) Three grape CBF/DREB1 genes respond to low temperature, drought and abscisic acid. Plant Cell Environ 29(7):1410–1421

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Hu J, Li Y, Ma W, Zheng Y, Zhu S (2011) Chilling tolerance in Nicotiana tabacum induced by seed priming with putrescine. Plant Growth Regul 63(3):279–290

    Article  CAS  Google Scholar 

  • Yang W, Liu X-D, Chi X-J, Wu C-A, Li Y-Z, Song L-L, Liu X-M, Wang Y-F, Wang F-W, Zhang C (2011) Dwarf apple MbDREB1 enhances plant tolerance to low temperature, drought, and salt stress via both ABA-dependent and ABA-independent pathways. Planta 233(2):219–229

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Verslues PE, Zheng X, B-h Lee, Zhan X, Manabe Y, Sokolchik I, Zhu Y, Dong C-H, Zhu J-K (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. PNAS 102(28):9966–9971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the earmarked fund for Modern Agro-industry Technology Research System (CARS-23), the National Natural Science Foundation of China (31470690, 31570689), the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions and the Plan of Suzhou Engineering Research Center for Modern Ecological Tea Industry of China (SZGD201067).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xing-hui Li.

Additional information

Ying Yin and Qing-ping Ma have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 158 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, Y., Ma, Qp., Zhu, Zx. et al. Functional analysis of CsCBF3 transcription factor in tea plant (Camellia sinensis) under cold stress. Plant Growth Regul 80, 335–343 (2016). https://doi.org/10.1007/s10725-016-0172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10725-016-0172-0

Keywords

Navigation