Skip to main content

Advertisement

Log in

Diabetes and SGLT2-iss inhibitors in patients with heart failure with preserved or mid-range left ventricular ejection fractions

  • Published:
Heart Failure Reviews Aims and scope Submit manuscript

Abstract

Diabetic patients frequently develop heart failure with preserved (HFpEF) or mid-range (HFmEF) cardiac ejection fractions. This condition may be secondary to diabetic cardiomyopathy or one of several relevant comorbidities, mainly hypertension. Several mechanisms link diabetes to HFpEF or HFmEF. Among these, non-enzymatic glycation of interstitial proteins, lipotoxicity, and endothelial dysfunction may promote structural damage and ultimate lead to heart failure. Findings from several large-scale trials indicated that treatment with sodium/glucose cotransporter 2 inhibitors (SGLT2-iss) resulted in significant improvements in cardiovascular outcomes in diabetic patients with high cardiovascular risk. However, there is currently some evidence that suggests a clinical advantage of using SGLT2-iss specifically in cases of HFpEF or HFmEF. Preclinical and clinical studies revealed that SGLT2-iss treatment results in a reduction in left ventricular mass and improved diastolic function. While some of the beneficial effects of SGLT2-iss have already been characterized (e.g., increased natriuresis and diuresis as well as reduced blood pressure, plasma volume, and arterial stiffness, and nephron-protective activities), there is increasing evidence suggesting that SGLT2-iss may have direct actions on the heart. These findings include SGLT2-iss-mediated reductions in the expression of hypertrophic foetal genes and diastolic myofilaments stiffness, increases in global phosphorylation of myofilament regulatory proteins (in HFpEF), inhibition of cardiac late sodium channel current and Na+/H+ exchanger activity, metabolic shifts, and effects on calcium cycling. Preliminary data from previously published studies suggest that SGLT2-iss could be useful for the treatment of HFpEF and HFmEF. Several large ongoing trials, including DELIVER AND EMPEROR -preserved have been designed to evalute the efficacy of SGLT2-iss in improving clinical outcomes in patients diagnosed with HFpEF. The goal of this manuscript is to review the use of SGLT2-iss inhibitors for HFpEF or HFmEF associated with diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Availability of data and material

Not applicable.

Code availability

Not applicable.

References

  1. Kenny HC, Abel ED (2019) Heart failure in type 2 diabetes mellitus. Circ Res 124:121–141. https://doi.org/10.1161/CIRCRESAHA.118.311371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Targher G, Dauriz M, Laroche C, Temporelli PL, Hassanein M, Seferovic et al (2017) ESC-HFA HF Long-Term Registry investigators. In-hospital and 1-year mortality associated with diabetes in patients with acute heart failure: results from the ESC-HFA Heart Failure Long-Term Registry. Eur J Heart Fail 19:54–65. https://doi.org/10.1002/ejhf.679

    Article  CAS  PubMed  Google Scholar 

  3. Ponikowski P, Voors AA, Anker SD, Bueno H, Cleland JGF, Coats AJS et al (2016) 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC). Eur Heart J 37:2129–2200. https://doi.org/10.1093/eurheartj/ehw128

    Article  PubMed  Google Scholar 

  4. Bozkurt B, Coats A, Tsutsui H (2021) Universal definition and classification of heart failure. J Card Fail 7:S1071–9164(21)00050–6. https://doi.org/10.1016/j.cardfail.2021.01.022

  5. Fitchett D, Zinman B, Wanner C, Lachin JM, Hantel S, Salsali A et al (2016) Heart failure outcomes with empagliflozin in patients with type 2 diabetes at high cardiovascular risk: results of the EMPA-REG OUTCOME® trial. Eur Heart J 37:1526–1534. https://doi.org/10.1093/eurheartj/ehv728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fitchett D, Inzucchi SE, Cannon CP, McGuire DK, Scirica BM, Johansen OE et al (2019) Empagliflozin reduced mortality and hospitalization for heart failure across the spectrum of cardiovascular risk in the EMPA-REG OUTCOME trial. Circulation 139:1384–1395. https://doi.org/10.1161/CIRCULATIONAHA.118.037778

    Article  CAS  PubMed  Google Scholar 

  7. Neal B, Perkovic V, Mahaffey KW, de Zeeuw D, Fulcher G, Erondu N, CANVAS Program Collaborative Group et al (2017) Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med 377:644–657. https://doi.org/10.1056/NEJMoa1611925

  8. Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A et al (2019) Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med 380:347–357. https://doi.org/10.1056/NEJMoa1812389

    Article  CAS  PubMed  Google Scholar 

  9. Cannon CP, Pratley R, Dagogo-Jack S, Mancuso J, Huyck S, Masiukiewicz U et al (2020) Cardiovascular outcomes with Ertugliflozin in type 2 diabetes. N Engl J Med 383:1425–1435. https://doi.org/10.1056/NEJMoa2004967

    Article  CAS  PubMed  Google Scholar 

  10. Bhatt DL, Szarek M, Pitt B, Cannon CP, Leiter LA, McGuire DK et al (2021) Sotagliflozin in patients with diabetes and chronic kidney disease. N Engl J Med 384:129–139. https://doi.org/10.1056/NEJMoa2030186

    Article  CAS  PubMed  Google Scholar 

  11. McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA et al (2019) Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med 381:1995–2008. https://doi.org/10.1056/NEJMoa1911303

    Article  CAS  PubMed  Google Scholar 

  12. Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P et al (2020) Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med 383:1413–1424. https://doi.org/10.1056/NEJMoa2022190

    Article  CAS  PubMed  Google Scholar 

  13. Bhatt DL, Szarek M, Steg PG, Cannon CP, Leiter LA, McGuire DK et al (2021) Sotagliflozin in patients with diabetes and recent worsening heart failure. N Engl J Med 384:117–128. https://doi.org/10.1056/NEJMoa2030183

    Article  CAS  PubMed  Google Scholar 

  14. Seferović PM, Fragasso G, Petrie M, Mullens W, Ferrari R, Thum T et al (2020) Sodium-glucose co-transporter 2 inhibitors in heart failure: beyond glycaemic control. A position paper of the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 22:1495–1503. https://doi.org/10.1002/ejhf.1954

    Article  CAS  PubMed  Google Scholar 

  15. Paulus WJ, Tschöpe C, Sanderson JE, Rusconi C, Flachskampf FA, Rademakers FE et al (2007) Eur Heart J 28:2539–2550. https://doi.org/10.1093/eurheartj/ehm037

    Article  PubMed  Google Scholar 

  16. Meagher P, Adam M, Civitarese R, Bugyei-Twum A, Connelly KA (2018) Heart failure with preserved ejection fraction in diabetes: mechanisms and management. Can J Cardiol 34:632–643. https://doi.org/10.1016/j.cjca.2018.02.026

    Article  PubMed  Google Scholar 

  17. Lindman BR, Dávila-Román VG, Mann DL, McNulty S, Semigran MJ, Lewis GD et al (2014) Cardiovascular phenotype in HFpEF patients with or without diabetes: a RELAX trial ancillary study. J Am Coll Cardiol 64:541–549. https://doi.org/10.1016/j.jacc.2014.05.030

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kristensen SL, Mogensen UM, Jhund PS, Petrie MC, Preiss D, Win S et al (2017) Circulation 135:724–735. https://doi.org/10.1161/CIRCULATIONAHA.116.024593

    Article  PubMed  Google Scholar 

  19. Aguilar D, Deswal A, Ramasubbu K, Mann DL, Bozkurt B (2010) Comparison of patients with heart failure and preserved left ventricular ejection fraction among those with versus without diabetes mellitus. Am J Cardiol 105:373–377. https://doi.org/10.1016/j.amjcard.2009.09.04

    Article  PubMed  Google Scholar 

  20. MacDonald MR, Petrie MC, Varyani F, Ostergren J, Michelson EL, Young JB et al (2008) Impact of diabetes on outcomes in patients with low and preserved ejection fraction heart failure: an analysis of the Candesartan in Heart failure: Assessment of Reduction in Mortality and morbidity (CHARM) programme. Eur Heart J 29:1377–1385. https://doi.org/10.1093/eurheartj/ehn153

    Article  PubMed  Google Scholar 

  21. Lam CS (2015) Diabetic cardiomyopathy: an expression of stage B heart failure with preserved ejection fraction. Diab Vasc Dis Res 12:234–238. https://doi.org/10.1177/1479164115579006

    Article  CAS  PubMed  Google Scholar 

  22. van Heerebeek L, Hamdani N, Handoko ML, Falcao-Pires I, Musters RJ, Kupreishvili K et al (2008) Diastolic stiffness of the failing diabetic heart: importance of fibrosis, advanced glycation end products, and myocyte resting tension. Circulation 117:43–51. https://doi.org/10.1161/CIRCULATIONAHA.107.7285

    Article  PubMed  Google Scholar 

  23. Rubler S, Dlugash J, Yuceoglu YZ, Kumral T, Branwood AW, Grishman A (1972) New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol 30:595–602. https://doi.org/10.1016/0002-9149(72)90595-4

    Article  CAS  PubMed  Google Scholar 

  24. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34. https://doi.org/10.1016/0002-9149(74)90089-7

    Article  CAS  PubMed  Google Scholar 

  25. Hunt SA, Baker DW, Chin MH, Cinquegrani MP, Feldman AM, Francis GS et al (2001) ACC/AHA guidelines for the evaluation and management of chronic heart failure in the adult: executive summary circulation 104:2996–3007. https://doi.org/10.1161/hc4901.102568

    Article  CAS  PubMed  Google Scholar 

  26. Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638. https://doi.org/10.1161/CIRCRESAHA.117.311586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Miki T, Yuda S, Kouzu H, Miura T (2013) Diabetic cardiomyopathy: pathophysiology and clinical features. Heart Fail Rev 18:149–166. https://doi.org/10.1007/s10741-012-9313-3

    Article  PubMed  Google Scholar 

  28. Packer M (2021) Differential pathophysiological mechanisms in heart failure with a reduced or preserved ejection fraction in diabetes. JACC Heart Fail 9:535–549. https://doi.org/10.1016/j.jchf.2021.05.019

    Article  PubMed  Google Scholar 

  29. Anzawa R, Seki S, Nagoshi T, Taniguchi I, Feuvray D, Yoshimura M (2012) The role of Na+/H+ exchanger in Ca2+ overload and ischemic myocardial damage in hearts from type 2 diabetic db/db mice. Cardiovasc Diabetol 11(11):33. https://doi.org/10.1186/1475-2840-11-33.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nakamura TY, Iwata Y, Arai Y, Komamura K, Wakabayashi S (2008) Activation of Na+/H+ exchanger 1 is sufficient to generate Ca2+ signals that induce cardiac hypertrophy and heart failure. Circ Res 103:891–899. https://doi.org/10.1161/CIRCRESAHA.108.175141

    Article  CAS  PubMed  Google Scholar 

  31. Packer M (2020) Epicardial adipose tissue inflammation can cause the distinctive pattern of cardiovascular disorders seen in psoriasis. Am J Med 133:267–272. https://doi.org/10.1016/j.amjmed.2019.08.027

    Article  CAS  PubMed  Google Scholar 

  32. Fukami K, Yamagishi S, Okuda S (2014) Role of AGEs-RAGE system in cardiovascular disease. Curr Pharm Des 20:2395–2402. https://doi.org/10.2174/13816128113199990475

    Article  CAS  PubMed  Google Scholar 

  33. Hegab Z, Gibbons S, Neyses L, Mamas MA (2012) Role of advanced glycation end products in cardiovascular disease. World J Cardiol 4:90–102. https://doi.org/10.4330/wjc.v4.i4.90

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wong TC, Piehler KM, Kang IA, Kadakkal A, Kellman P, Schwartzman DS et al (2014) Myocardial extracellular volume fraction quantified by cardiovascular magnetic resonance is increased in diabetes and associated with mortality and incident heart failure admission. Eur Heart J 35:657–664. https://doi.org/10.1093/eurheartj/eht193

    Article  CAS  PubMed  Google Scholar 

  35. Bidasee KR, Nallani K, Yu Y, Cocklin RR, Zhang Y, Wang M et al (2003) Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes 52:1825–1836. https://doi.org/10.2337/diabetes.52.7.1825

    Article  CAS  PubMed  Google Scholar 

  36. Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer UD, Besch HR Jr (2004) Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes 53:463–473. https://doi.org/10.2337/diabetes.53.2.463

    Article  CAS  PubMed  Google Scholar 

  37. Poornima IG, Parikh P, Shannon RP (2006) Diabetic cardiomyopathy: the search for a unifying hypothesis. Circ Res 98:596–605. https://doi.org/10.1161/01.RES.0000207406.94146.c2

    Article  CAS  PubMed  Google Scholar 

  38. Zhang DX, Fryer RM, Hsu AK, Zou AP, Gross GJ, Campbell WB, Li PL (2001) Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic Res Cardiol 96:267–274. https://doi.org/10.1007/s003950170057

    Article  CAS  PubMed  Google Scholar 

  39. Ricciardi CA, Gnudi L (2021) Vascular growth factors as potential new treatment in cardiorenal syndrome in diabetes. Eur J Clin Invest 3:e13579. https://doi.org/10.1111/eci.1357

    Article  Google Scholar 

  40. Natali A, Nesti L, Fabiani I, Calogero E, Di Bello V (2017) Impact of empagliflozin on subclinical left ventricular dysfunctions and on the mechanisms involved in myocardial disease progression in type 2 diabetes: rationale and design of the EMPA-HEART trial. Cardiovasc Diabetol 16:130. https://doi.org/10.1186/s12933-017-0615-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Hammoudi N, Jeong D, Singh R, Farhat A, Komajda M, Mayoux E et al (2017) Empagliflozin improves left ventricular diastolic dysfunction in a genetic model of type 2 diabetes. Cardiovasc Drugs Ther 3:233–246. https://doi.org/10.1007/s10557-017-6734-1

    Article  CAS  Google Scholar 

  42. Verma S, Mazer CD, Yan AT, Mason T, Garg V, Teoh H et al (2019) Effect of empagliflozin on left ventricular mass in patients with type 2 diabetes mellitus and coronary artery disease: the EMPA-HEART CardioLink-6 randomized clinical trial. Circulation 140:1693–1702. https://doi.org/10.1161/CIRCULATIONAHA.119.042375

    Article  PubMed  Google Scholar 

  43. Mason T, Coelho-Filho OR, Verma S, Chowdhury B, Zuo F, Quan A et al (2021) Empagliflozin reduces myocardial extracellular volume in patients with type 2 diabetes and coronary artery disease. JACC Cardiovasc Imaging 14:1164–1173. https://doi.org/10.1016/j.jcmg.2020.10.017

    Article  PubMed  Google Scholar 

  44. Li J, Woodward M, Perkovic V, Figtree GA, Heerspink HJL, Mahaffey KW et al (2020) Mediators of the effects of Canagliflozin on heart failure in patients with type 2 diabetes. JACC Heart Fail 8:57–66. https://doi.org/10.1016/j.jchf.2019.08.004

    Article  PubMed  Google Scholar 

  45. Williams DM, Nawaz A, Evans M (2020) Renal outcomes in type 2 diabetes: a review of cardiovascular and renal outcome trials. Diabetes Ther 11:369–386. https://doi.org/10.1007/s13300-019-00747-3

    Article  CAS  PubMed  Google Scholar 

  46. Uthman L, Baartscheer A, Schumacher CA, Fiolet JWT, Kuschma MC, Hollmann MW et al (2018) Direct cardiac actions of sodium glucose cotransporter 2 inhibitors target pathogenic mechanisms underlying heart failure in diabetic patients. Front Physiol 9:1575. https://doi.org/10.3389/fphys.2018.0157

    Article  PubMed  PubMed Central  Google Scholar 

  47. Di Franco A, Cantini G, Tani A, Coppini R, Zecchi-Orlandini S, Raimondi L et al (2017) Int J Cardiol 243:86–90. https://doi.org/10.1016/j.ijcard.2017.05.032

    Article  PubMed  Google Scholar 

  48. Byrne NJ, Parajuli N, Levasseur JL, Boisvenue J, Beker DL, Masson G et al (2017) Empagliflozin prevents worsening of cardiac function in an experimental model of pressure overload-induced heart failure. JACC Basic Transl Sci 2:347–354. https://doi.org/10.1016/j.jacbts.2017.07.003

    Article  PubMed  PubMed Central  Google Scholar 

  49. Pabel S, Wagner S, Bollenberg H, Bengel P, Kovács Á, Schach C et al (2018) Empagliflozin directly improves diastolic function in human heart failure. Eur J Heart Fail 20:1690–1700. https://doi.org/10.1002/ejhf.1328

    Article  CAS  PubMed  Google Scholar 

  50. Byrne NJ, Matsumura N, Maayah ZH, Ferdaoussi M, Takahara S, Darwesh AM et al (2020) Empagliflozin blunts worsening cardiac dysfunction associated with reduced NLRP3 (nucleotide-binding domain-like receptor protein 3) inflammasome activation in heart failure. Circ Heart Fail 13:e006277. https://doi.org/10.1161/CIRCHEARTFAILURE.119.006277

    Article  CAS  PubMed  Google Scholar 

  51. Philippaert K, Kalyaanamoorthy S, Fatehi M, Long W, Soni S, Byrne NJ, Barr A et al (2021) Circulation 143:2188–2204. https://doi.org/10.1161/CIRCULATIONAHA.121.053350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Makielski JC (2016) Trends Cardiovasc Med 26:115–122. https://doi.org/10.1016/j.tcm.2015.05.006

    Article  CAS  PubMed  Google Scholar 

  53. Uthman L, Baartscheer A, Bleijlevens B, Schumacher CA, Fiolet JWT, Koeman A et al (2018) Class effects of SGLT2 inhibitors in mouse cardiomyocytes and hearts: inhibition of Na+/H+ exchanger, lowering of cytosolic Na+ and vasodilation. Diabetologia 61:722–726. https://doi.org/10.1007/s00125-017-4509-7

    Article  CAS  PubMed  Google Scholar 

  54. Trum M, Riechel J, Lebek S, Pabel S, Sossalla ST, Hirt S (2020) ESC Heart Fail 7:4429–4437. https://doi.org/10.1002/ehf2.13024

    Article  PubMed  PubMed Central  Google Scholar 

  55. Díaz-Rodríguez E, Agra RM, Fernández ÁL, Adrio B, García-Caballero T et al (2018) S.Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res 114:336–346. https://doi.org/10.1093/cvr/cvx186

    Article  CAS  PubMed  Google Scholar 

  56. Ferrannini E, Mark M, Mayoux E (2016) CV Protection in the EMPA-REG OUTCOME ttrial: a “thrifty substrate” hypothesis. Diabetes Care 39:1108–1114. https://doi.org/10.2337/dc16-0330

    Article  PubMed  Google Scholar 

  57. Becher PM, Schrage B, Ferrannini G, Benson L, Butler J, Carrero JJ et al (2021) Use of sodium-glucose co-transporter 2 inhibitors in patients with heart failure and type 2 diabetes mellitus: data from the Swedish Heart Failure Registry. Eur J Heart Fail 23:1012–1022. https://doi.org/10.1002/ejhf.2131

    Article  CAS  PubMed  Google Scholar 

  58. Abraham WT, Lindenfeld J, Ponikowski P, Agostoni P, Butler J, Desai AS et al (2021) Effect of empagliflozin on exercise ability and symptoms in heart failure patients with reduced and preserved ejection fraction, with and without type 2 diabetes. Eur Heart J 42:700–710. https://doi.org/10.1093/eurheartj/ehaa943

    Article  CAS  PubMed  Google Scholar 

  59. Rådholm K, Figtree G, Perkovic V, Solomon SD, Mahaffey KW, de Zeeuw D et al (2018) Circulation 138:458–468. https://doi.org/10.1161/CIRCULATIONAHA.118.034222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sarraju A, Li J, Cannon CP, Chang TI, Agarwal R, Bakris G et al (2021) Effects of canagliflozin on cardiovascular, renal, and safety outcomes in participants with type 2 diabetes and chronic kidney disease according to history of heart failure: Results from the CREDENCE trial. Am Heart 233:141–148. https://doi.org/10.1016/j.ahj.2020.12.008

    Article  CAS  Google Scholar 

  61. Kato ET, Silverman MG, Mosenzon O, Zelniker TA, Cahn A, Furtado RHM et al (2019) Effect of dapagliflozin on heart failure and mortality in type 2 diabetes mellitus. Circulation 139:2528–2536. https://doi.org/10.1161/CIRCULATIONAHA.119.040130

    Article  CAS  PubMed  Google Scholar 

  62. Cosentino F, Cannon CP, Cherney DZI, Masiukiewicz U, Pratley R, Dagogo-Jack S et al (2020) Efficacy of ertugliflozin on heart failure-related events in patients with type 2 diabetes mellitus and established atherosclerotic cardiovascular disease: results of the VERTIS CV trial. Circulation 142:2205–2215. https://doi.org/10.1161/CIRCULATIONAHA.120.05025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. CONSENSUS Trial Study Group (1987) Effects of enalapril on mortality in severe congestive heart failure. Results of the Cooperative North Scandinavian Enalapril Survival Study (CONSENSUS). N Engl J Med 316:1429–1435. https://doi.org/10.1056/NEJM198706043162301

    Article  Google Scholar 

  64. Singh AK, Singh R, Misra A (2021) Do SGLT-2 inhibitors exhibit similar cardiovascular benefit in patients with heart failure with reduced or preserved ejection fraction? J Diabetes 13:596–600. https://doi.org/10.1111/1753-0407.13182

    Article  CAS  PubMed  Google Scholar 

  65. Anker SD, Butler J, Filippatos GS, Jamal W, Salsali A, Schnee J et al (2019) Evaluation of the effects of sodium-glucose co-transporter 2 inhibition with empagliflozin on morbidity and mortality in patients with chronic heart failure and a preserved ejection fraction: rationale for and design of the EMPEROR-Preserved Trial. Eur J Heart Fail 21:1279–1287. https://doi.org/10.1002/ejhf.1596

    Article  CAS  PubMed  Google Scholar 

  66. Anker SD, Butler J, Filippatos G, Shahzeb KM, Ferreira JP et al (2020) Baseline characteristics of patients with heart failure with preserved ejection fraction in the EMPEROR-Preserved trial. Eur J Heart Fail 22:2383–2392. https://doi.org/10.1002/ejhf.2064

    Article  CAS  PubMed  Google Scholar 

  67. Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Böhm M et al (2021) Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. Online ahead of print. https://doi.org/10.1056/NEJMoa2107038

  68. https://clinicaltrials.gov/ct2/results?cond=heart+failure+preserved&term=sglt2&cntry=&state=&city=&dist=. Accessed 16 July 2021

  69. Solomon SD, de Boer RA, DeMets D, Hernandez AF, Inzucchi SE, Kosiborod MN et al (2021) Dapagliflozin in heart failure with preserved and mildly reduced ejection fraction: rationale and design of the DELIVER trial Eur J Heart Fail May 29. Online ahead of print. https://doi.org/10.1002/ejhf.2249

Download references

Author information

Authors and Affiliations

Authors

Contributions

AP, CR, AlP, and DS contributed to the conception and design of the review. AP and CR wrote sections of the manuscript. All authors contributed to manuscript revision and read and approved the submitted version.

Corresponding author

Correspondence to Andrea Passantino.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Passantino, A., Rizzo, C., Scrutinio, D. et al. Diabetes and SGLT2-iss inhibitors in patients with heart failure with preserved or mid-range left ventricular ejection fractions. Heart Fail Rev 28, 683–695 (2023). https://doi.org/10.1007/s10741-021-10186-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10741-021-10186-7

Keywords

Navigation