Skip to main content

Advertisement

Log in

Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA)

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Mayflies (Insecta: Ephemeroptera) are common inhabitants of streams throughout the Appalachian Mountains. Headwater mayfly assemblages were evaluated with respect to regional landuse disturbances (coal mining and residential) in eastern Kentucky, USA. Estimates of mayfly taxa richness and relative abundance were compared at 92 sites represented by least-disturbed reference (REF; n = 44), residential only (RESID; n = 14), mixed residential and mining (MINED/RESID; n = 14), and mining only (MINED; n = 20) landuse categories. A total of 48 species from 27 genera and 9 families were identified; Ephemerella, Epeorus, Ameletus, Cinygmula, and Paraleptophlebia comprised the core 5 genera most frequently encountered at REF sites. These same genera (among others) were often reduced or extirpated from other landuse categories. Mean mayfly richness and relative abundance were significantly higher at REF sites compared to all other categories; MINED sites had significantly lower metric values compared to RESID and MINED/RESID sites. Relative mayfly abundance was most strongly correlated to specific conductance (r = 0.72) compared to total habitat score (r = 0.59), but relationships varied depending on landuse category. Non-metric multidimensional scaling (for mayfly taxa) and principal components analysis (for environmental variables) separated REF sites strongly from most other sites. The results indicate that expected mayfly communities are disappearing from streams where mining disturbance and residential development has occurred and because of the long-term impacts incurred by both landuses, recovery is uncertain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander, L. C., 2007. Genetic diversity and persistence of mayfly populations in disturbed headwater streams. PhD. Dissertation. University of Maryland, College Park, MD.

  • Barber-James, H. M., J. Gattolliat, M. Sartori & M. D. Hubbard, 2008. Global diversity of mayflies (Ephemeroptera, Insecta) in freshwater. Hydrobiologia 595: 339–350.

    Article  Google Scholar 

  • Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid Bioassessment Protocols for use in Streams and Wadeable Rivers: Periphyton, Benthic Macroinvertebrates, and Fish, Second Edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, DC.

  • Bauernfeind, E. & O. Moog, 2000. Mayflies (Insecta: Ephemeroptera) and the assessment of ecological integrity: a methodological approach. Hydrobiologia 422(423): 71–83.

    Article  Google Scholar 

  • Beketov, M. A., 2004. Different sensitivities of mayflies (Insecta, Ephemeroptera) to ammonia, nitrite and nitrate: linkage between experimental and observational data. Hydrobiologia 528: 209–216.

    Article  CAS  Google Scholar 

  • Blakely, T. J., J. S. Harding, A. R. Mcintosh & M. J. Winterbourn, 2006. Barriers to the recovery of aquatic insect communities in urban streams. Freshwater Biology 51: 1634–1645.

    Article  Google Scholar 

  • Bodkin, R., J. Kern, P. McClellon, A. J. Butt & C. Martin, 2008. Linking total dissolved solids to protect aquatic life. Journal of Soil & Water Conservation 62: 57–61.

    Google Scholar 

  • Bond, N. R. & P. S. Lake, 2003. Local habitat restoration in streams: constraints on the effectiveness of restoration for stream biota. Ecological Management and Restoration 4: 193–198.

    Article  Google Scholar 

  • Braun, E. L., 1950. Deciduous Forests of North America. Hafner, New York, NY.

    Google Scholar 

  • Bray, J. R. & J. T. Curtis, 1957. An ordination of the upland forest communities in southern Wisconsin. Ecological Monographs 27: 325–349.

    Article  Google Scholar 

  • Brinkman, S. F. & W. D. Johnston, 2008. Acute toxicity of aqueous copper, cadium, and zinc to the mayfly Rhithrogena hageni. Achives of Environmental Contamination and Toxicology 54: 466–472.

    Article  CAS  Google Scholar 

  • Brittain, J. E. & S. J. Saltveit, 1989. Review of effect of river regulation on mayflies (Ephemeroptera). Regulated Rivers Research and Management 3: 191–204.

    Article  Google Scholar 

  • Bryant, G., S. McPhilliamy & H. Childers, 2002. A Survey of the Water Quality of Streams in the Primary Region of Mountaintop/valley Fill Coal Mining. Mountaintop Mining/valley Fill Programmatic Environmental Impact Statement. Region 3, US Environmental Protection Agency, Wheeling, WV.

    Google Scholar 

  • Buchwalter, D. B. & S. N. Luoma, 2005. Differences in dissolved cadmium and zinc uptake among stream insects: mechanistic explanations. Environmental Science and Technology 39: 498–504.

    Article  CAS  PubMed  Google Scholar 

  • Buchwalter, D. B., D. J. Cain, W. H. Clements & S. N. Luoma, 2007. Using biodynamic models to reconcile differences between laboratory toxicity tests and field biomonitoring with aquatic insects. Environmental Science and Technology 41: 4821–4828.

    Article  CAS  PubMed  Google Scholar 

  • Buss, D. F. & F. F. Salles, 2007. Using Baetidae species as biological indicators of environmental degradation in a Brazilian River basin. Environmental Monitoring and Assessment 130: 365–372.

    Article  CAS  PubMed  Google Scholar 

  • Chadwick, M. A., H. Hunter, J. M. Feminella & R. P. Henry, 2002. Salt and water balance in Hexagenia limbata (Ephemeroptera: Ephemeridae) when exposed to brackish water. Florida Entomologist 85: 650–651.

    Article  Google Scholar 

  • Chambers, D. B. & T. Messer, 2000. Benthic Invertebrate Communities and Their Responses to Selected Environmental Factors in the Kanawha River Basin, West Virginia, Virginia, and North Carolina. Water-Resources Investigations Report 01-4021. US Geological Survey, Charleston, WV.

    Google Scholar 

  • Clements, W. H., 1994. Benthic invertebrate community responses to heavy metals in the upper Arkansas River Basin, Colorado. Journal of the North American Benthological Society 19: 30–44.

    Article  Google Scholar 

  • Clements, W. H., 2004. Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community response. Ecological Applications 14: 954–967.

    Article  Google Scholar 

  • Clements, W. H., D. S. Cherry & J. H. Van Hassel, 1992. Assessment of the impact of heavy metals on benthic communities at the Clinch River (Virginia): evaluation of an index of community sensitivity. Canadian Journal of Fisheries and Aquatic Sciences 49:1686–169.

    Google Scholar 

  • Courtney, L. A. & W. H. Clements, 2000. Sensitivity to acidic pH in benthic invertebrate assemblages with different histories of metal exposure. Journal of the North American Benthological Society 19: 112–127.

    Article  Google Scholar 

  • Cuffney, T. F., H. Zappia, E. M. P. Giddings & J. F. Coles, 2005. Effects of urbanization on benthic macroinvertebrate assemblages in contrasting environmental settings: Boston, Massachusetts; Birmingham, Alabama; and Salt Lake City, Utah. American Fisheries Society Symposium 47: 361–407.

    Google Scholar 

  • Goetsch, P. A. & C. G. Palmer, 1996. Salinity tolerances of selected macroinvertebrates of the Sabie River, Kruger National Park, South Africa. Archives of Environmental Contamination and Toxicology 32: 32–41.

    Article  Google Scholar 

  • Green J., M. Passmore & H. Childers, 2000. A survey of the condition of streams in the primary region of mountaintop mining/valley fill coal mining. Mountaintop Mining/Valley Fill Programmatic Environmental Impact Statement. U.S. Environmental Protection Agency, Region III. Wheeling, WV. http://www.epa.gov/region3/mtntop/eis2003appendices.htm.

  • Griffith, M. B., E. M. Barrows & S. A. Perry, 1998. Lateral dispersal of adult aquatic insects (Plecoptera, Trichoptera) following emergence from headwater streams in forested Appalachian catchments. Annals of the Entomological Society of America 91: 195–201.

    Google Scholar 

  • Haefner, J. D. & J. B. Wallace, 1981. Shifts in aquatic insect populations in a first-order Appalachian stream following a decade of old field succession. Canadian Journal of Fisheries and Aquatic Science. 38: 353–359.

    Article  Google Scholar 

  • Hartman, K. J., M. D. Kaller, J. W. Howell & J. A. Sweka, 2005. How much do valley fills influence headwater streams? Hydrobiologia 532: 91–102.

    Article  CAS  Google Scholar 

  • Hassell, K. L., B. J. Kefford & D. Nugegoda, 2006. Sub-lethal and chronic salinity tolerances of three freshwater insects: Cloeon sp. and Centroptilum sp. (Ephemeroptera: Baetidae) and Chironomus sp. (Diptera: Chironomidae). Journal of Experimental Biology 209: 4024–4032.

    Article  PubMed  Google Scholar 

  • Herlihy, A. T., J. L. Stoddard & C. B. Johnson, 1998. The relationship between stream chemistry and watershed land cover data in the Mid-Atlantic region, US. Water, Air, and Soil pollution 105: 377–386.

    Article  CAS  Google Scholar 

  • Hershey, A. E., J. Pastor, B. J. Peterson & G. J. Kling, 1993. Stable isotopes resolve the drift paradox for Baetis mayflies in an arctic river. Ecology 74: 2415–2425.

    Article  Google Scholar 

  • Hughes, J., 2007. Constraints on recovery: using molecular methods to study connectivity of aquatic biota in rivers and streams. Freshwater Biology 52: 616–631.

    Article  Google Scholar 

  • Kennedy, A. J., D. S. Cherry & R. J. Currie, 2003. Field and laboratory assessment of a coal processing effluent in the Leading Creek watershed, Meigs County, Ohio. Archives Environmental Contamination and Toxicology 44: 324–331.

    Article  CAS  Google Scholar 

  • Kentucky Department for Environmental Protection (KYDEP), 2007. Kentucky Administrative Regulations, 401 KAR 5:031 Section 4. Kentucky Department for Environmental Protection, Frankfort, Kentucky. http://www.lrc.ky.gov/kar/401/010/031.htm.

  • Kentucky Department for Environmental Protection (KYDEP), 2008. Methods for Assessing Biological Integrity of Surface Waters in Kentucky. Kentucky Energy and Environment Cabinet. http://www.water.ky.gov/sw/swmonitor/sop/.

  • Kondratieff, B. C. (coordinator), 2000. Mayflies of the United States. Northern Prairie Wildlife Research Center Online, Jamestown, ND. Accessed January 7, 2009. http://www.npwrc.usgs.gov/resource/distr/insects/mfly/index.htm (Version 12DEC2003).

  • Kreutzweiser, D. P., S. S. Capell & K. P. Good, 2005. Macroinvertebrate community response to selection logging and upland areas of headwater catchments in a northern hardwood forest. Journal of the North American Benthological Society 24: 208–222.

    Article  Google Scholar 

  • Lemly, A. D., 1998. Bacterial growth on stream insects: potential for use in bioassessment. Journal of the North American Benthological Society 17(2): 228–238.

    Article  Google Scholar 

  • Lemly, A. D., 2000. Using bacterial growth on insects to assess nutrient impacts in streams. Environmental Monitoring and Assessment 63: 431–446.

    Article  CAS  Google Scholar 

  • Masters, Z., I. Petersen, A. G. Hildrew & S. J. Ormerod, 2006. Insect dispersal does not limit the biological recovery of streams from acidification. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 375–383.

    Article  Google Scholar 

  • McClurg, S. E., J. T. Petty, P. M. Mazik & J. L. Clayton, 2007. Stream ecosystem response to limestone treatment in acid impacted watersheds of the Allegheny Plateau. Ecological Applications 17: 1087–1104.

    Article  PubMed  Google Scholar 

  • McCune, B. & J. B. Grace, 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, OR.

    Google Scholar 

  • McCune, B. & M. J. Mefford, 1999. Multivariate Analysis of Ecological Data. Version 4.25. MjM Software, Gleneden Beach, OR.

    Google Scholar 

  • Merricks, T. C., D. S. Cherry, C. E. Zipper, R. J. Currie & T. W. Valenti, 2007. Coal mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environmental Monitoring and Assessment 129: 359–378.

    Article  CAS  PubMed  Google Scholar 

  • Moog, O., E. Bauernfeind & P. Weicshelbaumer, 1997. Use of Ephemeroptera as saprobic indicators in Austria. In Landolt, P. & M. Sartori (eds), Ephemroptera and Plecoptera: Biology-Ecology-Systematics. MTL, Fribourg: 254–260.

  • Morse J. C., B. P. Stark, W. P. McCafferty & K. J. Tennessen, 1997. Southern Appalachian and other southeastern streams at risk: implications for mayflies, dragonflies, stoneflies, and caddisflies. In Benz, G. W. & D. E. Collins (eds), Aquatic Fauna in Peril: The Southeastern Perspective. Special Publication 1, Southeastern Aquatic Research Institute. Lenz Design and Communications, Decatur, GA: 17–42, 554.

  • Mount, D. R., D. D. Gulley, J. R. Hoickett, T. D. Garrison & J. M. Evans, 1997. Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna, and Pimephales promelas (fathead minnows). Environmental Toxicology and Chemistry 16(10): 2009–2019.

    Article  CAS  Google Scholar 

  • NOAA, 2009. http://www.ncdc.noaa.gov/oa/climate/research/drought/palmer-maps/.

  • Parker, C. R., O. S. Flint, L. M. Jacobs, B. C. Kondratieff, W. P. McCafferty & J. C. Morse, 2007. Ephemeroptera, Plecoptera, Megaloptera, and Trichoptera of Great Smoky Mountains National Park. Southeastern Naturalist Special Issue 1: 159–174.

    Article  Google Scholar 

  • Paul, M. J. & J. L. Meyer, 2001. Streams in the urban landscape. Annual Review of Ecology and Sytematics 32: 333–365.

    Article  Google Scholar 

  • Petersen, I., Z. Masters, A. G. Hildrew & S. J. Omerod, 2004. Dispersal of adult aquatic insects in catchment of differing land use. Journal of Applied Ecology 41: 934–950.

    Article  Google Scholar 

  • Pond G. J. & S. E. McMurray, 2002. A macroinvertebrate bioassessment index for headwater streams in the eastern coalfield region, Kentucky. Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY. http://www.water.ky.gov/NR/rdonlyres/4CA8D7C4-309B-4175-ACC4-1CBDDDF73798/0/EKyMBI.pdf.

  • Pond G. J., S. C. Call, J. F. Brumley & M. C. Compton, 2003. The Kentucky macroinvertebrate bioassessment index: derivation of regional narrative criteria for headwater and wadeable streams. Kentucky Department for Environmental Protection, Division of Water, Frankfort, KY. http://www.water.ky.gov/NR/rdonlyres/7F189804-4322-4C3E-B267-5A58E48AAD3F/0/Statewide_MBI.pdf.

  • Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using genus- and family-level bioassessment tools. Journal of the North American Benthological Society 27: 717–737.

    Article  Google Scholar 

  • R Development Core Team, 2009. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.

  • Randolph R. P. & W. P. McCafferty, 1998. Diversity and distribution of the mayflies (Ephemeroptera) of Illinois, Indiana, Kentucky, Michigan, Ohio, and Wisconsin. Ohio Biological Survey Bulletin (new series) 13(1): 188 pp.

  • Reice, S. R., 1985. Experimental disturbance and the maintenance of species diversity in a stream community. Oecologia 67: 90–97.

    Article  Google Scholar 

  • Slonecker, E. T. & M. J. Benger, 2002. Remote sensing and mountaintop mining. Remote Sensing Reviews 20: 293–322.

    Google Scholar 

  • Smith, R. F. & W. O. Lamp, 2008. Comparison of insect communities between adjacent headwater and main-stem streams in urban and rural watersheds. Journal of the North American Benthological Society 27: 161–175.

    Article  Google Scholar 

  • Snyder, C. D. & Z. B. Johnson, 2006. Macroinvertebrate assemblage recovery following a catastrophic flood and debris flows in an Appalachian mountain stream. Journal of the North American Benthological Society 25: 825–840.

    Article  Google Scholar 

  • Soucek, D. J., 2001. Integrative bioassessment of acid mine drainage impacts on the Upper Powell River watershed, Southwestern Virginia. PhD dissertation. Virginia Polytechnic Institute and State University, Blacksburg, Virginia.

  • Stone, M. K. & J. B. Wallace, 1998. Long-term recovery of a mountain stream from clear-cut logging: the effects of forest succession on benthic community structure. Freshwater Biology 39: 151–169.

    Article  Google Scholar 

  • U.S. Environmental Protection Agency, 2005. Mountaintop Mining/Valley Fills in Appalachia, Final Programmatic Environmental Impact Statement. http://www.epa.gov/region3/mtntop/index.htm.

  • Wallace, J. B., 1990. Recovery of lotic macroinvertebrate communities from disturbance. Environmental Management 14: 605–620.

    Article  Google Scholar 

  • Wallace, J. B. & M. E. Gurtz, 1986. Response of Baetis mayflies (Ephemeroptera) to catchment logging. American Midland Naturalist 115: 25–41.

    Article  Google Scholar 

  • Wallace, J. B., M. E. Gurtz & F. Smith-Cuffney, 1988. Long-term comparison of insect abundances in disturbed and undisturbed Appalachian headwater streams. Verhandlungen der Internationalen Vereinigung fur Theoretische und Angewandte Limnologie 23: 1224–1231.

    Google Scholar 

  • Weijters, M. J., J. H. Janse, R. Alemade & J. T. A. Verhoeven, 2009. Quantifying the effect of catchment land use and water nutrient concentrations on freshwater river and stream biodiversity. Aquatic Conservation: Marine and Freshwater Ecosystems 19: 104–112.

    Article  Google Scholar 

  • Wellnitz, K. A., S. Grief & S. P. Sheldon, 1994. Response of macroinvertebrates to blooms of iron-depositing bacteria. Hydrobiologia 281: 1–17.

    Article  CAS  Google Scholar 

  • Wickham, J. D., K. H. Riitters, T. G. Wade, M. Coan & C. Homer, 2007. The effect of Appalachian mountaintop mining on interior forest. Landscape Ecology 22: 179–187.

    Article  Google Scholar 

  • Woods A. J., J. M. Omernik, W. H. Martin, G. J. Pond, W. M. Andrews, S. M. Call, J. A. Comstock & D. D. Taylor, 2002. Ecoregions of Kentucky (2 sided color poster with map, descriptive text, summary tables, and photographs). US Geological Survey (map scale 1:1,000,000), Reston, VA.

  • Wunsch, D. R., J. S. Dinger, P. B. Taylor, D. I. Carey & C. D. R. Graham, 1996. Hydrogeology, Hydrogeochemistry, and Spoil Settlement at a Large Mine-spoil Area in Eastern Kentucky: Star Fire Tract. Report of Investigations 10, Series XI. Kentucky Geological Survey, University of Kentucky, Lexington, KY.

Download references

Acknowledgements

Special thanks for field and laboratory assistance go to present and former KYDEP biologists S. McMurray, M. Compton, D. Peake, R. Pierce, M. Vogel, R. Payne, C. Schneider, J. Brumley, E. Eisiminger, and S. Call. Thanks also to U.S. EPA’s L. Yuan for statistical support and to U.S. EPA’s M. Passmore, L. Alexander, J. Forren, and K. Krock, and KYDEP’s B. Marbert, for providing helpful comments on earlier versions of the manuscript. The final manuscript was improved by R. Bailey and 2 anonymous referees. Views and opinions are those of the author and this manuscript does not necessarily reflect the official views of either the U.S. Environmental Protection Agency or the KY Department for Environmental Protection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregory J. Pond.

Additional information

Handling editor: Robert Bailey

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pond, G.J. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641, 185–201 (2010). https://doi.org/10.1007/s10750-009-0081-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-009-0081-6

Keywords

Navigation