Skip to main content
Log in

Prediction of marine species distribution from presence–absence acoustic data: comparing the fitting efficiency and the predictive capacity of conventional and novel distribution models

  • ECOSYSTEMS AND SUSTAINABILITY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The accurate representation of species distribution derived from sampled data is essential for management purposes and to underpin population modelling. Additionally, the prediction of species distribution for an expanded area, beyond the sampling area can reduce sampling costs. Here, several well-established and recently developed habitat modelling techniques are investigated in order to identify the most suitable approach to use with presence–absence acoustic data. The fitting efficiency of the modelling techniques are initially tested on the training dataset while their predictive capacity is evaluated using a verification set. For the comparison among models, Receiver Operating Characteristics (ROC), Kappa statistics, correlation and confusion matrices are used. Boosted Regression Trees (BRT) and Associative Neural Networks (ASNN), which are both within the machine learning category, outperformed the other modelling approaches tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aertsen, W., V. Kint, J. van Orshoven, K. Őzkan & B. Muys, 2010. Comparison and ranking of different modelling techniques for prediction of site index in Mediterranean mountain forests. Ecological Modelling 221: 1119–1130.

    Article  Google Scholar 

  • Akaike, H., 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control 19: 716–723.

    Article  Google Scholar 

  • Amara, R., K. Mahé, O. LePape & N. Desroy, 2004. Growth, feeding and distribution of the solenette Buglossidium luteum with particular reference to its habitat preference. Journal of Sea Research 51: 211–217.

    Article  Google Scholar 

  • Bakun, A., 2001. ‘School-mix feedback’: a different way to think about low frequency variability in large mobile fish populations. Progress in Oceanography 49: 485–511.

    Article  Google Scholar 

  • Bishop, M., 1995. Neural Networks for Pattern Recognition. Oxford University Press, Oxford.

    Google Scholar 

  • Bodholt, H., H. Nes & H. Solli, 1989. A new echo sounder system. Proceedings of the Institute of Acoustics 11(3): 123–130.

    Google Scholar 

  • Boyce, M. S., P. R. Vernier, S. E. Nielsen & F. K. A. Schmiegelow, 2002. Evaluating resource selection functions. Ecological Modelling 157: 281–300.

    Article  Google Scholar 

  • Brotons, L., W. Thuiller, M. B. Araujo & A. H. Hirzel, 2004. Presence–absence versus presence-only modelling methods for predicting bird habitat suitability. Ecography 27: 437–448.

    Article  Google Scholar 

  • Burman, P., E. Chow & D. Nolan, 1994. A cross-validatory method for dependent data. Biometrika 81(2): 351–358.

    Article  Google Scholar 

  • Busby, J. R., 1991. BIOCLIM—a bioclimate analysis and prediction system. In Margules, C. R. & M. P. Austin (eds), Nature Conservation: Cost Effective Biological Surveys and Data Analysis. CSIRO, Australia: 64–68.

    Google Scholar 

  • Carpenter, G., A. N. Gillison & J. Winter, 1993. DOMAIN: a flexible modeling procedure for mapping potential distributions of animals and plants. Biodiversity and Conservation 2: 667–680.

    Article  Google Scholar 

  • Caruana, R. & A. Niculescu-Mizil, 2006. An empirical comparison of supervised learning algorithms. Proceedings of International Conference on Machine Learning, 23rd, Pittsburgh, PA.

  • Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20: 37–46.

    Article  Google Scholar 

  • Cristianini, N. & J. Shawe-Taylor, 2000. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods. Cambridge University Press, London.

    Google Scholar 

  • Daskalov, G. M., D. C. Boyer & J. P. Roux, 2003. Relating sardine Sardinops sagax abundance to environmental indices in northern Benguela. Progress in Oceanography 59: 257–274.

    Article  Google Scholar 

  • Dormann, C. F., J. M. McPherson, M. B. Araujo, R. Bivand & J. Bolliger, 2007. Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30: 609–628.

    Article  Google Scholar 

  • Dray, S., P. Legendre & P. R. Peres-Neto, 2006. Spatial modeling: a comprehensive framework for principal coordinate analysis of neighbor matrices (PCNM). Ecological Modelling 196: 483–493.

    Article  Google Scholar 

  • Elith, J. & M. A. Burgman, 2002. Predictions and their validation: rare plants in the Central Highlands, Victoria, Australia. In Scott, J. M. (ed.), Predicting Species Occurrences: Issues of Accuracy and Scale. Island Press, Washington, DC: 303–314.

    Google Scholar 

  • Elith, J. & J. R. Leathwick, 2009. Species distribution models: ecological explanation and prediction across space and time. Annual Review of Ecology, Evolution, and Systematics 40: 677–697.

    Article  Google Scholar 

  • Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier, A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick, A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G. Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. Mc, C. Overton, A. T. Peterson, S. J. Phillips, K. S. Richardson, R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Williams, M. S. Wisz & N. E. Zimmermann, 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129–151.

    Article  Google Scholar 

  • Ferrier, S. & G. Watson, 1997. An evaluation of the effectiveness of environmental surrogates and modelling techniques in predicting the distribution of biological diversity. Environment Australia, Canberra [avialable on internet at http://www.deh.gov.au/biodiversity/publications/technical/surrogates/].

  • Ferrier, M. D., G. Manion & G. Watson, 2002. Extended statistical approaches to modelling spatial pattern in biodiversity: the north-east New SouthWales experience. I. Species-level modelling. Biodiversity and Conservation 11: 2275–2307.

    Article  Google Scholar 

  • Fielding, A. H. & J. F. Bell, 1997. A review of methods for the assessment of prediction errors in conservation presence/absence models. Environmental Conservation 24: 38–49.

    Article  Google Scholar 

  • Francis, M. P., M. A. Morrison, J. Leathwick, C. Walsh & C. Middleton, 2005. Predictive models of small fish presence and abundance in northern New Zealand harbours. Estuarine, Coastal and Shelf Science 64: 419–435.

    Article  Google Scholar 

  • Friedman, J. H., 1991. Multivariate adaptive regression splines. Annals of Statistics 19: 1–141.

    Article  Google Scholar 

  • Friedman, J. H. & J. J. Meulman, 2003. Multiple adaptive regression trees with application in epidemiology. Statistics in Medicine 22: 1365–1381.

    Article  PubMed  Google Scholar 

  • Fu, J. W., R. J. Carroll & S. Wang, 2005. Estimating misclassification error with small samples via bootstrap cross-validation. Bioinformatics 21: 1979–1986.

    Article  PubMed  CAS  Google Scholar 

  • Garcìa, A. & I. Palomera, 1996. Anchovy early life history and its relation to its surrounding environment in the Western Mediterranean basin. Scientia Marina 60(2): 155–166.

    Google Scholar 

  • Georgakarakos, S. & D. Kitsiou, 2008. Mapping abundance distribution of small pelagic species applying hydroacoustics and co-kriging techniques. Hydrobiologia 612(1): 155–169.

    Article  Google Scholar 

  • Giannoulaki, M., V. D. Valavanis, A. Palialexis, K. Tsagarakis, A. Machias, S. Somarakis & C. Papaconstantinou, 2008. Modelling the presence of anchovy Engraulis encrasicolus in the Aegean Sea during early summer, based on satellite environmental data. Hydrobiologia 612(1): 225–240.

    Article  Google Scholar 

  • Gower, J. C. & P. Legendre, 1986. Metric and Euclidean properties of dissimilarity coefficients. Journal of Classification 3(1): 5–48.

    Article  Google Scholar 

  • Graham, C. H., C. Moritz & S. E. Williams, 2006. Habitat history improves prediction of biodiversity in a rainforest fauna. Proceedings of the National Academy of Sciences USA 103: 632–636.

    Article  CAS  Google Scholar 

  • Gudrun, C. & I. Kühn, 2008. Analyzing spatial ecological data using linear regression and wavelet analysis. Stochastic Environmental Research and Risk Assessment 22: 315–324.

    Article  Google Scholar 

  • Guisan, A. & W. Thuiller, 2005. Predicting species distribution: offering more than simple habitat models. Ecological Letters 8: 993–1009.

    Article  Google Scholar 

  • Guisan, A. & N. E. Zimmermann, 2000. Predictive habitat distribution models in ecology. Ecological Modelling 135(2–3): 147–186.

    Article  Google Scholar 

  • Hastie, T. & R. Tibshirani, 1990. Generalized Additive Models. Chapman and Hall, London.

    Google Scholar 

  • Hastie, T. J., R. Tibshirani & A. Buja, 1994. Flexible discriminant analysis by optimal scoring. JASA 89: 1255–1270.

    Google Scholar 

  • Hastie, T., R. Tibshirani & J. Friedman, 2009. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer Series in Statistics), 2nd ed. Springer, Berlin.

    Google Scholar 

  • Hirzel, A. H. & A. Guisan, 2002. Which is the optimal sampling strategy for habitat suitability modelling. Ecological Modelling 157: 331–341.

    Article  Google Scholar 

  • Holland, J. H., 1975. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann Arbor.

    Google Scholar 

  • Jaberg, C. & A. Guisan, 2001. Modelling the distribution of bats in relation to landscape structure in a temperate mountain environment. Journal of Applied Ecology 38: 1169–1181.

    Article  Google Scholar 

  • Jaynes, E. T., 1957. Information theory and statistical mechanics. Physics Revisions 106: 620–630.

    Article  Google Scholar 

  • Leathwick, J. R., D. Rowe, J. Richardson, J. Elith & T. Hastie, 2005. Using multivariate adaptive regression splines to predict the distributions of New Zealand’s freshwater diadromous fish. Freshwater Biology 50: 2034–2052.

    Article  Google Scholar 

  • Leathwick, J. R., J. Elith, M. P. Francis, T. Hastie & P. Taylor, 2006a. Variation in demersal fish species richness in the oceans surrounding New Zealand: an analysis using boosted regression trees. Marine Ecology Progress Series 321: 267–281.

    Article  Google Scholar 

  • Leathwick, J. R., J. Elith & T. Hastie, 2006b. Comparative performance of generalized additive models and multivariate adaptive regression splines for statistical modelling of species distributions. Ecological Modelling 199: 188–196.

    Article  Google Scholar 

  • Lefkaditou, E., C.-Y. Politou, A. Palialexis, J. Dokos, P. Cosmopoulos & V. D. Valavanis, 2008. Influences of environmental variability on the population structure and distribution patterns of the short-fin squid Illex coindetii (Cephalopoda: Ommastrephidae) in the Eastern Ionian Sea. Hydrobiologia 612(1): 71–90.

    Article  Google Scholar 

  • Legendre, P., 1993. Spatial autocorrelation: trouble or new paradigm? Ecology 74: 1659–1673.

    Article  Google Scholar 

  • Legendre, P. & L. Legendre, 1998. Numerical Ecology, 2nd English Edition. Elsevier Science BV, Amsterdam.

  • Lehmann, A., J. M. C. Overton & J. R. Leathwick, 2002. GRASP: generalized regression analysis and spatial prediction. Ecological Modelling 157: 189–207.

    Article  Google Scholar 

  • Liu, C., P. M. Berry, T. P. Dawson & R. G. Pearson, 2005. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28: 385–393.

    Article  Google Scholar 

  • MacCall, A. D., 1990. Dynamic Geography of Marine Fish Populations. University of Washington Press, Seattle: 153.

    Google Scholar 

  • MacLennan, D. N., P. G. Fernandes & J. Dalen, 2002. A consistent approach to definitions and symbols in fisheries acoustics. ICES Journal of Marine Science 59: 365–369.

    Article  Google Scholar 

  • MacLeod, D., C. L. Mandleberg, C. Schweder, S. M. Bannon & G. J. Pierce, 2008. A comparison of approaches for modelling the occurrence of marine animals. Hydrobiologia 612(1): 21–32.

    Article  Google Scholar 

  • Martin, P., N. Bahamon, A. Sabates, F. Maynou, P. Sanchez & M. Demestre, 2008. European anchovy (Engraulis encrasicolus) landings and environmental conditions on the Catalan Coast (NW Mediterranean) during 2000–2005. Hydrobiologia 612(1): 185–199.

    Article  Google Scholar 

  • Matheron, G., 1971. The Theory of Regionalized Variables and its Applications. Ecole Nationale Supe′rieure des Mines de Paris, Fontainebleau.

    Google Scholar 

  • Moguerza, J. & A. Muñoz, 2006. Support vector machines with applications. Statistical Science 21(3): 322–336.

    Article  Google Scholar 

  • Moisen, G. G. & T. S. Frescino, 2002. Comparing five modelling techniques for predicting forest characteristics. Ecological Modelling 157: 209–225.

    Article  Google Scholar 

  • Moran, P. A. P., 1950. Notes on continuous stochastic phenomena. Biometrika 37: 17–23.

    PubMed  CAS  Google Scholar 

  • Morrison, M. L., B. G. Marcot & R. W. Mannan, 1992. Wildlife Habitat Relationships: Concepts and Applications. University Wisconsin Press, Madison, WI: 341.

    Google Scholar 

  • Muiño, R., P. Carrera, P. Petitgas, D. J. Beare, S. Georgakarakos, J. Haralambous, M. Iglesias, B. Liorzou, J. Masse & D. G. Reid, 2003. Consistency in the correlation of school parameters across years and stocks. ICES Journal of Marine Science 60: 164–175.

    Article  Google Scholar 

  • Muñoz, M. E. S., R. Giovanni, M. F. Siqueira, T. Sutton, P. Brewer, R. S. Pereira, D. A. L. Canhos & V. P. Canhos, 2009. openModeller: a generic approach to species’ potential distribution modelling. GeoInformatica. doi:10.1007/s10707-009-0090-7.

  • Muñoz, J. & A. M. Fellicisimo, 2004. Comparison of statistical methods commonly used in predictive modeling. Journal of Vegetation Science 15: 285–292.

    Article  Google Scholar 

  • Murphy, A. H. & R. L. Winkler, 1992. Diagnostic verification of probability forecasts. International Journal of Forecasting 7: 435–455.

    Article  Google Scholar 

  • Nix, H. A., 1986. A biogeographic analysis of Australian elapid snakes. In Longmore, R. (ed.), Atlas of Elapid Snakes of Australia (Australian Flora and Fauna Series 7). Australian Government Publishing Service, Canberra: 4–15.

    Google Scholar 

  • Olivier, F. & S. J. Wotherspoon, 2005. GIS-based application of resource selection functions to the prediction of snow petrel distribution and abundance in East Antarctica: comparing models at multiple scales. Ecological Modelling 189: 105–129.

    Article  Google Scholar 

  • Ostrom, E., 1990. Governing the Commons: The Evolution of Institutions for Collective Action. Cambridge University Press, New York.

    Google Scholar 

  • Palialexis, A., S. Georgakarakos, K. Lika & V. D. Valavanis, 2009. Comparing novel approaches used for prediction of species distribution from presence/absence acoustic data. Proceedings of the Second International Conference on Environmental Management, Engineering, Planning and Economics (CEMEPE 09), June 21–26, 2009, Mykonos, Greece.

  • Palialexis, A., S. Georgakarakos, I. Karakassis, K. Lika & V. D. Valavanis, this issue. Fish distribution predictions from different points of view: comparing associative neural networks, geostatistics and regression models. doi:10.1007/s10750-011-0676-6.

  • Petitgas, P., D. Reid, P. Carrera, M. Iglesias, S. Georgakarakos, B. Liorzou & J. Masse, 2001. On the relation between schools, clusters of schools, and abundance in pelagic fish stocks. ICES Journal of Marine Research 58: 1150–1160.

    Article  Google Scholar 

  • Phillips, S. J., M. Dudik & R. E. Schapire, 2004. A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning: 655–662.

  • Phillips, S. J., R. P. Anderson & R. E. Schapire, 2006. Maximum entropy modelling of species geographic distributions. Ecological Modelling 190: 231–259.

    Article  Google Scholar 

  • Piñeiro, R., J. F. Aguilar, D. D. Munt & G. N. Feliner, 2007. Ecology matters: Atlantic-Mediterranean disjunction in the sand-dune shrub Armeria pungens (Plumbaginaceae). Molecular Ecology 16: 2155–2171.

    Article  PubMed  CAS  Google Scholar 

  • Planque, B., E. Bellier & P. Lazure, 2007. Modelling potential spawning habitat of sardine (Sardina pilchardus) and anchovy (Engraulis encrasicolus) in the Bay of Biscay. Fisheries Oceanography 16(1): 16–30.

    Article  Google Scholar 

  • Poulos, S. E., G. T. Chronis, M. B. Collins & V. Lykousis, 2000. Thermaikos Gulf Coastal System, NW Aegean Sea: an overview of water/sediment fluxes in relation to air-land-ocean interactions and human activities. Journal of Marine Systems 25: 47–76.

    Article  Google Scholar 

  • R Development Core Team, 2005. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria [available on internet at http://www.Rproject.org].

  • Racine, J., 2000. Consistent cross-validatory model-selection for dependent data: hv-block cross-validation. Journal of Econometrics 99: 39–61.

    Article  Google Scholar 

  • Ramzi, A., My. L. Hbid & O. Ettahiri, 2006. Larval dynamics and recruitment modelling of the Moroccan Atlantic coast sardine (Sardina pilchardus). Ecological Modelling 197: 296–302.

    Article  Google Scholar 

  • Ready, J., K. Kaschner, A. B. South, P. D. Eastwood, T. Rees, J. Rius, E. Agbayani, S. Kullander & R. Froese, 2010. Predicting the distributions of marine organisms at the global scale. Ecological Modelling 221(3): 467–478.

    Article  Google Scholar 

  • Redfern, J. V., M. C. Ferguson, E. A. Becker, K. D. Hyrenbach, C. Good, J. Barlow, K. Kaschner, M. F. Baumgartner, K. A. Forney, L. T. Ballance, P. Fauchald, P. Halpin, T. Hamazaki, A. J. Pershing, S. S. Qian, A. Read, S. B. Reilly, L. Torres & F. Werner, 2006. Techniques for cetacean-habitat modelling. Marine Ecology Progress Series 310: 271–295.

    Article  Google Scholar 

  • Richards, C. L., B. C. Carstens & L. Knowles, 2007. Distribution modelling and statistical phylogeography: an integrative framework for generating and testing alternative biogeographical hypotheses. Journal of Biogeography 34: 1833–1845.

    Article  Google Scholar 

  • Rossi, R. E., D. J. Mula, A. G. Journel & E. H. Franz, 1992. Geostatistical tools for modeling and interpreting ecological spatial dependence. Ecological Monographs 2: 277–314.

    Article  Google Scholar 

  • Ruiz, J., E. Garcia-Isarch, I. E. Huertas, L. Prieto, A. Juárez, J. L. Munõz, A. Sánchez-Lamadrid, S. Rodrìguez-Gálvez, J. M. Naranjo & F. Baldó, 2006. Meteorological and oceanographic factors influencing Engraulis encrasicolus early life stages and catches in the Gulf of Cádiz. Deep-Sea Research II 53: 1363–1376.

    Article  Google Scholar 

  • Sabatés, A., P. Martìn, J. Lloret & V. Raya, 2006. Sea warming and fish distribution: the case of the small pelagic fish, Sardinella aurita, in the western Mediterranean. Global Change Biology 12: 2209–2219.

    Article  Google Scholar 

  • Santos, A. M. P., A. Peliz, J. Dubert, P. B. Oliveira, M. M. Angélico & P. Ré, 2004. Impact of a winter upwelling event on the distribution and transport of sardine (Sardina pilchardus) eggs and larvae off western Iberia: a retention mechanism. Continental Shelf Research 24: 149–165.

    Article  Google Scholar 

  • Schölkopf, B., A. Smola, R. Williamson & P. L. Bartlett, 2000. New support vector algorithms. Neural Computation 12: 1207–1245.

    Article  PubMed  Google Scholar 

  • Schröder, B., 2008. Challenges of species distribution modeling belowground. Journal of Plant Nutrition and Soil Science 171: 325–337.

    Article  CAS  Google Scholar 

  • Segurado, P. & M. B. Araujo, 2004. An evaluation of methods for modelling species distributions. Journal of Biogeography 31: 1555–1568.

    Article  Google Scholar 

  • Siapatis, A., M. Giannoulaki, V. D. Valavanis, A. Palialexis, E. Schismenou, A. Machias & S. Somarakis, 2008. Modelling potential habitat of the invasive ctenophore Mnemiopsis leidyi in Aegean Sea. Hydrobiologia 612(1): 281–295.

    Article  Google Scholar 

  • Simmonds, E. J. & D. N. MacLennan, 2005. Fisheries Acoustics: Theory and Practice. Blackwell Science Ltd, Oxford.

    Book  Google Scholar 

  • Simon, R., M. D. Radmacher, K. Dobbin & L. M. McShane, 2003. Pitfalls in the use of DNA microarray data for diagnostic and prognostic classification. Journal of the National Cancer Institute 95(1): 14–18.

    PubMed  CAS  Google Scholar 

  • Somarakis, S., P. Drakopoulos & V. Filippou, 2002. Distribution and abundance of larval fishes in the northern Aegean Sea—eastern Mediterranean—in relation to early summer oceanographic conditions. Journal of Plankton Research 24: 339–357.

    Article  Google Scholar 

  • Stergiou, I. K. & A. Lascaratos, 1997. Climatic variability and the anchovy/sardine ratio in Hellenic waters. GeoJournal 41(3): 245–254.

    Article  Google Scholar 

  • Stockwell, D. R. B., 1999. Genetic algorithms II. In Fielding, A. H. (ed.), Machine Learning Methods for Ecological Applications. Kluwer Academic Publishers, Boston: 123–144.

    Google Scholar 

  • Stockwell, D. & D. Peters, 1999. The GARP modelling system: problems and solutions to automated spatial prediction. International Journal of Geographical Information Science 13: 143–158.

    Article  Google Scholar 

  • Tetko, I. V., 2002a. Associative neural network. Neural Processing Letters 16: 187–199.

    Article  Google Scholar 

  • Tetko, I. V., 2002b. Neural network studies. Introduction to associative neural networks. Journal of Chemical Information and Modeling 42: 717–728.

    Article  CAS  Google Scholar 

  • Tetko, I. V. & V. Y. Tanchuk, 2002. Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program. Journal of Chemical Information and Modeling 42: 1136–1145.

    Article  CAS  Google Scholar 

  • Tetko, I. V., D. J. Livingstone & A. I. Luik, 1995. Neural network studies. Comparison of overfitting and overtraining. Journal of Chemical Information and Modeling 5: 826–833.

    Article  Google Scholar 

  • Tetko, I. V., I. Sushko, A. K. Pandey, H. Zhu, A. Tropsha, E. Papa, T. Oberg, R. Todeschini, D. Fourches & A. Varnek, 2008. Critical assessment of QSAR models of environmental toxicity against Tetrahymena pyriformis: focusing on applicability domain and overfitting by variable selection. Journal of Chemical Information and Modeling 48(9): 1733–1746.

    Article  PubMed  CAS  Google Scholar 

  • Tsagarakis, K., A. Machias, S. Somarakis, M. Giannoulaki, A. Palialexis & V. D. Valavanis, 2008. Habitat discrimination of juvenile sardines in the Aegean Sea using remotely sensed environmental data. Hydrobiologia 612(1): 215–223.

    Article  Google Scholar 

  • Tychonoff, A. N. & V. Y. Arsenin, 1977. Solution of Ill-posed Problems. Winston and Sons, Washington. ISBN:0-470-99124-0.Valavanis, V. D., S. Georgakarakos, A. Kapantagakis, A. Palialexis & I. Katara, 2004. A GIS environmental modelling approach to Essential Fish Habitat Designation. Ecological Modelling 178: 417–427.

  • Valavanis V. D., A. Kapantagakis, I. Katara & A. Palialexis, 2004. Critical regions: A GIS-based model of marine productivity hotspots. Aquatic Sciences 66(1): 139–148.

    Article  Google Scholar 

  • Valavanis, V. D., G. J. Pierce, A. F. Zuur, A. Palialexis, A. Saveliev, I. Katara & J. Wang, 2008. Modelling of essential fish habitat based on remote sensing, spatial analysis and GIS. Hydrobiologia 612(1): 5–20.

    Article  Google Scholar 

  • Vapnik, V., 1995. The Nature of Statistical Learning Theory. SpringerVerlag, New York.

    Google Scholar 

  • Walline, P. D., 2007. Geostatistical simulations of eastern Bering Sea walleye pollock spatial distributions, to estimate sampling precision. ICES Journal of Marine Science 64: 559–569.

    Article  Google Scholar 

  • Wood, S. N., 2006. Generalized Additive Models: An Introduction with R. Chapman & Hall/CRC Press, Boca Raton.

    Google Scholar 

  • Wood, S. N., 2008. Fast stable direct fitting and smoothness selection for generalized additive models. Journal of the Royal Statistical Society: Series B 70(3): 495–518.

    Google Scholar 

  • Wood, S. N. & N. H. Augustin, 2002. GAMs with integrated model selection using penalized regression splines and applications to environmental modelling. Ecological Modelling 157: 157–177.

    Article  Google Scholar 

  • Zaniewski, A. E., A. Lehman & J. Overton, 2002. Predicting species spatial distributions using presence-only data: a case study of native New Zealand ferns. Ecological Modelling 157: 261–280.

    Article  Google Scholar 

  • Zheng, B. & A. Agresti, 2000. Summarizing the predictive power of a generalized linear model. Statistics in Medicine 19: 1771–1781.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Palialexis.

Additional information

Guest editors: Graham J. Pierce, Vasilis D. Valavanis, Begoña M. Santos & Julio M. Portela / Marine Ecosystems and Sustainability

Rights and permissions

Reprints and permissions

About this article

Cite this article

Palialexis, A., Georgakarakos, S., Karakassis, I. et al. Prediction of marine species distribution from presence–absence acoustic data: comparing the fitting efficiency and the predictive capacity of conventional and novel distribution models. Hydrobiologia 670, 241–266 (2011). https://doi.org/10.1007/s10750-011-0673-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0673-9

Keywords

Navigation