Skip to main content

Advertisement

Log in

Stand structure influences nekton community composition and provides protection from natural disturbance in Micronesian mangroves

  • HABITAT COMPLEXITY
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Structurally complex mangrove roots are thought to provide foraging habitat, predation refugia, and typhoon protection for resident fish, shrimp, and crabs. The spatially compact nature of Micronesian mangroves results in model ecosystems to test these ideas. Tidal creek nekton assemblages were compared among mangrove forests impacted by Typhoon Sudal and differing in stand structure. Structurally complex Rhizophora spp. stands were predicted to support higher densities and different communities of nekton and to provide greater protection from typhoons compared to less complex Sonneratia alba/Bruguiera gymnorrhiza stands. Lift net data revealed that structural complexity did not support greater nekton densities, but did support significantly different nekton assemblages. The cardinalfish Apogon ceramensis and goby Oxyurichthys lonchotus had significantly higher densities in S. alba/B. gymnorrhiza mangrove creeks, whereas the silverside Atherinomorus lacunosus and diogenid crabs had significantly higher densities in Rhizophora spp. creeks. Similar nekton densities 17 and 4 months after the typhoon in Rhizophora spp. creeks provided indirect evidence that structural complexity increased protection for resident nekton from disturbances. Findings indicate that studies of structural complexity and nekton densities may be better served when individual species are compared and that diverse mangrove tree assemblages will support diverse nekton assemblages that may be more resilient to disturbance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allen, J. A., K. C. Ewel, B. D. Keeland, T. Tara & T. J. Smith III, 2000. Downed wood in Micronesian mangrove forests. Wetlands 20: 169–176.

    Article  Google Scholar 

  • Alongi, D. M., 2008. Mangrove forests: resilience, protection from tsunamis, and responses to global climate change. Estuarine, Coastal and Shelf Science 76: 1–13.

    Article  Google Scholar 

  • Alongi, D. M., 2009. The energetics of mangrove forests. Springer, Dordrecht.

    Google Scholar 

  • Alongi, D. M. & A. Sasekumar, 1992. Benthic communities. In Robertson, A. I. & D. M. Alongi (eds), Tropical Mangrove Ecosystems. Coastal and Estuarine Studies, Vol. 41. American Geophysical Union, Washington, DC: 137–172.

    Google Scholar 

  • Berti, R., S. Cannicci, S. Fabbroni & G. Innocenti, 2008. Notes on the structure and the use of Neosarmatium meinerti and Cardisoma carnifex burrows in a Kenyan mangrove swamp (Decapoda Brachyura). Ethology, Ecology, and Evolution 20: 101–113.

    Article  Google Scholar 

  • Bosire, J. O., F. Dahdouh-Guebas, J. G. Kairo, S. Wartel, J. Kazungu & N. Koedam, 2006. Success rates of recruited tree species and their contribution to the structural development of reforested mangrove stands. Marine Ecology Progress Series 325: 85–91.

    Article  Google Scholar 

  • Bouchon, C., Y. Bouchon-Navaro & M. Louis, 1994. Changes in the coastal fish communities following Hurricane Hugo in Guadeloupe Island (French West Indies). Atoll Research Bulletin 422: 1–13.

    Google Scholar 

  • Boyle, K., 2004. Monthly global tropical cyclone summary. http://www.australiasevereweather.com/cyclones/2004/summ0404.htm. Accessed 23 Aug 2011.

  • Burkholder, J., D. Eggleston, H. Glasgow, C. Brownie, R. Reed, G. Janowitz, M. Posey, G. Melia, C. Kinder, R. Corbett, D. Toms, T. Alphin, N. Deamer & J. Springer, 2004. Comparative impacts of two major hurricane seasons on the Neuse River and western Pamlico Sound ecosystems. Proceedings of the National Academy of Sciences USA 101: 9291–9296.

    Article  CAS  Google Scholar 

  • Carpenter, K. E. & V. H. Niem, 2001. The Living Marine Resources of the Western Central Pacific. Food and Agriculture Organization of the United Nations, Rome.

  • Carr, M. R., 1997. PRIMER User Manual: Plymouth Routines in Multivariate Ecological Research. Plymouth Marine Laboratories, Plymouth.

    Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 1994. Change In Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth.

    Google Scholar 

  • Conand, F., 1993. Life history of the silverside Atherinomorus lacunosus (Atherinidae) in New Caledonia. Journal of Fish Biology 42: 851–863.

    Article  Google Scholar 

  • Crowl, T. A., W. H. McDowell, A. P. Covich & S. L. Johnson, 2001. Freshwater shrimp effects on detrital processing and nutrients in a tropical headwater stream. Ecology 82: 775–783.

    Article  Google Scholar 

  • Dahdouh-Guebas, F., L. P. Jayatissa, D. Di Nitto, J. O. Bosire, D. Lo Seen & N. Koedam, 2005. How effective were mangroves as a defence against the recent tsunami? Current Biology 15: R443–R447.

    Article  PubMed  CAS  Google Scholar 

  • Demopoulos, A. W. J. & C. R. Smith, 2010. Invasive mangroves alter macrofaunal community structure and facilitate opportunistic exotics. Marine Ecology Progress Series 404: 51–67.

    Article  CAS  Google Scholar 

  • Dionne, M., 2000. Ecosystem indicator: nekton. In Neckles, H. A. & M. Dionne (eds), Regional Standards to Identify and Evaluate Tidal Wetland Restoration in the Gulf of Maine. Wells National Estuarine Research Reserve Technical Report, Wells, ME: 7–9.

  • Dionne, M., F. T. Short & D. M. Burdick, 1999. Fish utilization of restored, created, and reference salt-marsh habitat in the Gulf of Maine. American Fisheries Society Symposium 22: 384–404.

    Google Scholar 

  • Eberhardt, A. L., 2004. Fish versus human corridors: the impacts of road culverts on nekton community composition and movement in New England salt marshes. M.S. Thesis, University of New Hampshire.

  • Ellis, W. L. & S. S. Bell, 2004. Conditional use of mangrove habitats by fishes: depth as a cue to avoid predators. Estuaries 27: 966–976.

    Article  Google Scholar 

  • Ellison, J. C., 1998. Impacts of sediment burial on mangroves. Marine Pollution Bulletin 37: 420–426.

    Article  CAS  Google Scholar 

  • Ewel, K. C., J. A. Bourgeois & T. G. Cole, 1998. Variation in environmental characteristics and vegetation in high-rainfall mangrove forests, Kosrae, Micronesia. Global Ecology and Biogeography Letters 7: 49–56.

    Article  Google Scholar 

  • Ewel, K. C., R. D. Hauff & T. G. Cole, 2003. Analyzing mangrove forest structure and species distribution on a Pacific Island. Phytocoenologia 33: 251–266.

    Article  Google Scholar 

  • Falanruw, M. C., 1994. Food production and ecosystem management on Yap. ISLA Journal of Micronesian Studies 2: 15–22.

    Google Scholar 

  • Falanruw, M. C., C. D. Whitesell, T. G. Cole, C. D. MacLean & A. H. Ambacher, 1987. Vegetation Survey of Yap, Federated States of Micronesia. Resource Bulletin PSW-21. Pacific Southwest Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture., Berkeley, CA, USA.

  • FSM, 2004. Typhoon Sudal leaves Yap in state of emergency. http://www.fsmgov.org/press/pr041204.htm. Accessed 23 Aug 2011.

  • Gallina, S., S. Mandujano & A. Gonzalez-Romero, 1996. Conservation of mammalian biodiversity in coffee plantations of Central Veracruz, Mexico. Agroforestry Systems 33: 13–27.

    Article  Google Scholar 

  • Gleason, S. M., K. C. Ewel & N. Hue, 2003. Soil redox conditions and plant-soil relationships in a Micronesian mangrove forest. Estuarine, Coastal and Shelf Science 56: 1065–1074.

    Article  CAS  Google Scholar 

  • Gray, W. M., 1968. Global view of the origin of tropical disturbances and storms. Monthly Weather Review 96: 669–700.

    Article  Google Scholar 

  • Greenwood, M. F. D., P. W. Stevens & R. E. J. Matheson, 2006. Effects of the 2004 hurricanes on the fish assemblages in two proximate southwest Florida estuaries: change in the context of interannual variability. Estuaries and Coasts 29: 985–996.

    Google Scholar 

  • Greenwood, M. F. D., C. F. Idelberger & P. W. Stevens, 2007. Habitat associations of large-bodied mangrove-shoreline fishes in a southwest Florida estuary and the effects of hurricane damage. Bulletin of Marine Science 80: 805–821.

    Google Scholar 

  • Halliday, I. A. & W. R. Young, 1996. Density, biomass, and species composition of fish in a subtropical Rhizophora stylosa mangrove forest. Marine Freshwater Research 47: 609–615.

    Article  Google Scholar 

  • Hasurmai, M., E. Joseph, S. Palik & K. Rikim, 2005. The State of Coral Reef Ecosystems of the Federated States of Micronesia. Federated States of Micronesia. Palikir: 387–398.

  • Ikejima, K., P. Tongnunui, T. Medej & T. Taniuchi, 2003. Juvenile and small fishes in a mangrove estuary in Trang Province, Thailand: seasonal and habitat differences. Estuarine, Coastal and Shelf Science 56: 447–457.

    Article  Google Scholar 

  • Kauffman, J. B. & T. G. Cole, 2010. Micronesian mangrove forest structure and tree responses to a severe typhoon. Wetlands 30: 1077–1084.

    Article  Google Scholar 

  • Knott, D. M. & R. M. Martore, 1992. The short-term effects of Hurricane Hugo on fishes and decapod crustaceans in the Ashley River and adjacent marsh creeks, South Carolina. Journal of Coastal Research 8: 335–356.

    Google Scholar 

  • Kon, K., H. Kurokura & P. Tongnunui, 2009. Do mangrove root structures function to shelter benthic macrofauna from predators? Journal of Experimental Marine Biology and Ecology 370: 1–8.

    Article  Google Scholar 

  • Krauss, K. W., J. A. Allen & D. R. Cahoon, 2003. Differential rates of vertical accretion and elevation change among aerial root types in Micronesian mangrove forests. Estuarine and Coastal Marine Science 56: 251–259.

    Article  Google Scholar 

  • Kuo, S. R., H. J. Lin & K. T. Shao, 1999. Fish assemblages in the mangrove creeks of northern and southern Taiwan. Estuaries and Coasts 22: 1004–1015.

    Article  Google Scholar 

  • Laegdsgaard, P. & C. Johnson, 2001. Why do juvenile fish utilise mangrove habitats? Journal of Experimental Marine Biology and Ecology 257: 229–253.

    Article  PubMed  Google Scholar 

  • Layman, C. A., 2007. What can stable isotope ratios reveal about mangroves as fish habitat? Bulletin of Marine Science 80: 513–527.

    Google Scholar 

  • MacDonald, J. A., T. Glover & J. S. Weis, 2008. The impact of mangrove prop-root epibionts on juvenile reef fishes: a field experiment using artificial roots and epifauna. Estuaries and Coasts 31: 981–993.

    Article  Google Scholar 

  • MacKenzie, R. A. & M. Dionne, 2008. Habitat heterogeneity: the importance of salt marsh pools and high marsh surfaces to fish production in two Gulf of Maine salt marshes. Marine Ecology Progress Series 368: 217–230.

    Article  Google Scholar 

  • Merlin, M., A. Kugfas, T. Keene & J. Juvik, 1996. Plants, People and Ecology in Yap. East-West Center, Honolulu, HI.

    Google Scholar 

  • Milbrandt, E. C., J. M. Greenawalt-Boswell, P. D. Sokoloff & S. A. Bortone, 2006. Impact and response of southwest Florida mangroves to the 2004 Hurricane season. Estuaries and Coasts 29: 979–984.

    Google Scholar 

  • Morton, R. M., 1990. Community structure, density, and standing crop of fishes in a subtropical Australian mangrove area. Marine Biology 105: 385–394.

    Article  Google Scholar 

  • Myers, R. F., 1991. Micronesian Reef Fishes, 2nd ed. Coral Graphics, Barrigada.

    Google Scholar 

  • Nagelkerken, I. & G. van der Velde, 2002. Do non-estuarine mangroves harbour higher densities of juvenile fish than adjacent shallow-water and coral reef habitats in Curacao (Netherlands Antilles)? Marine Ecology Progress Series 245: 191–204.

    Article  Google Scholar 

  • Nagelkerken, I., A. M. De Schryver, M. C. Verweif, F. Dahdouh-Guebas, G. Van der Velde & N. Koedam, 2010. Differences in root architecture influence attraction of fishes to mangroves: a field experiment mimicking roots of different length, orientation, and complexity. Journal of Experimental Marine Biology and Ecology 396: 27–34.

    Article  Google Scholar 

  • Primavera, J. H., 1997. Fish predation on mangrove-associated penaids: the role of structure and substrate. Journal of Experimental Marine Biology and Ecology 215: 205–216.

    Article  Google Scholar 

  • Primavera, J. H. & J. Lebata, 1993. Diel activity patterns in Metapenaeus and Penaeus juveniles. Hydrobiologia 295: 295–302.

    Article  Google Scholar 

  • Prior, S. A. & C. Guard, 2005. In the Wake of a Destructive Typhoon: Cold Water, Low Tides, and Fog. Mariners Weather Log 49. http://www.vos.noaa.gov/MWL/april_05/typhoon.shtml. Accessed 23 Aug 2011.

  • Rahayu, D. L. & T. Koma, 2000. Shallow-water hermit crabs (Crustacea: Decapoda: Anomura: Diogenidae and Paguridae) of Phuket, Thailand. Phuket Marine Biological Center Research Bulletin 63: 21–44.

    Google Scholar 

  • Robertson, A. I. & N. C. Duke, 1990. Recruitment, growth and residence time of fishes in a tropical Australian mangrove system. Estuarine, Coastal and Shelf Science 31: 723–743.

    Article  Google Scholar 

  • Rönnbäck, P., M. Troell, N. Kautsky & J. H. Primavera, 1999. Distribution Pattern of shrimps and fish among Avicennia and Rhizophora microhabitats in the Pagbilao Mangroves, Philippines. Estuarine, Coastal and Shelf Science 48: 223–234.

    Article  Google Scholar 

  • Rozas, L. P. & W. E. Odum, 1987. Fish and macrocrustacean use of submerged plant beds in tidal freshwater marsh creeks. Marine Ecology Progress Series 38: 101–108.

    Article  Google Scholar 

  • Schneider, D. M., 1967. Typhoons on Yap. Human Organization 16: 12–15.

    Google Scholar 

  • Shaw, R. G. & T. Mitchell-Olds, 1993. Anova for unbalanced data: an overview. Ecology 74: 1638–1645.

    Article  Google Scholar 

  • Sheridan, P. & C. Hays, 2003. Are mangroves nursery habitat for transient fishes and decapods? Wetlands 23: 449–458.

    Article  Google Scholar 

  • Stevens, P. W., D. A. Blewett & J. P. Casey, 2006. Short-term effects of a low dissolved oxygen event on estuarine fish assemblages following the passage of Hurricane Charley. Estuaries and Coasts 29: 997–1003.

    Google Scholar 

  • Switzer, T. S., B. L. Winner, N. M. Dunham, J. A. Whittington & M. Thomas, 2006. Influence of sequential hurricanes on nekton communities in a southeast Florida estuary: short-term effects in the context of historical variations in freshwater inflow. Estuaries and Coasts 29: 1011–1018.

    Google Scholar 

  • Tilmant, J. T., R. W. Curry, R. Jones, A. Szmant, J. C. Zieman, M. Flora, M. B. Robblee, D. Smith, R. W. Snow & H. Wanless, 1994. Hurricane Andrew’s effects on marine resources. BioScience 44: 230–237.

    Article  Google Scholar 

  • Tomlinson, P. B., 1986. The Botany of Mangroves. Cambridge University Press, Cambridge.

    Google Scholar 

  • Turpin, R. K. & S. A. Bortone, 2002. Pre- and post-hurricane assessment of artificial reefs: evidence for potential use as refugia in a fishery management strategy. ICES Journal of Marine Science 59: S74–S82.

    Article  Google Scholar 

  • Unsworth, R. K. F., S. L. Garrard, P. S. De León, L. C. Cullen, D. J. Smith, K. A. Sloman & J. J. Bell, 2009. Structuring of Indo-Pacific fish assemblages along the mangrove–seagrass continuum. Aquatic Biology 5: 85–95.

    Article  Google Scholar 

  • Vance, D. J., M. D. E. Haywood, D. S. Heales, R. A. Kenyon, N. R. Loneragan & R. C. Pendrey, 1996. How far do prawns and fish move into mangroves? Distribution of juvenile banana prawns Penaeus merguiensis and fish in a tropical mangrove forest in northern Australia. Marine Ecology Progress Series 131: 115–124.

    Article  Google Scholar 

  • Vince, S. I., I. Valiela, N. Backus & J. M. Teal, 1976. Predation by the salt marsh killifish Fundulus heteroclitus (L.) in relation to prey size and habitat structure: consequences for prey distribution and abundance. Journal of Experimental Marine Biology and Ecology 23: 255–266.

    Article  Google Scholar 

  • Weisberg, S. B. & V. A. Lotrich, 1982. The importance of an infrequently flooded intertidal marsh surface as an energy source for the mummichog, Fundulus heteroclitus: an experimental approach. Marine Biology 66: 307–310.

    Article  Google Scholar 

Download references

Acknowledgments

We are extremely grateful to the people of Yap for providing us with access to and knowledge of their mangrove forests. We also thank M. Falanruw who helped coordinate logistics and sampling efforts. J. Libiy, F. Ruegarong, S. Mar, F. Yinung, B. Nakahara, A. Demopolous, and B. Tibbatts provided assistance in the field. Thanks to M. Greenfield, B. Tibbatts, and two anonymous reviewers who provided constructive comments on an earlier version of this manuscript. H. Larson and A. Bruce verified goby and shrimp identifications. This project was funded by a grant from the Forest Service’s International Programs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard A. MacKenzie.

Additional information

Guest editors: K. E. Kovalenko & S. M. Thomaz / The importance of habitat complexity in waterscapes

Rights and permissions

Reprints and permissions

About this article

Cite this article

MacKenzie, R.A., Cormier, N. Stand structure influences nekton community composition and provides protection from natural disturbance in Micronesian mangroves. Hydrobiologia 685, 155–171 (2012). https://doi.org/10.1007/s10750-011-0865-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-011-0865-3

Keywords

Navigation