Skip to main content
Log in

Multi-scale segregations and edaphic determinants of marsh plant communities in a western Pacific estuary

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Whether and how the roles of environmental factors in producing vegetation patterns in coastal marshes vary with spatial scale is not well understood. We investigated the relationship between plant communities and edaphic factors in the Yangtze estuary at three spatial scales. Plant communities and edaphic factors were quantified at high and low tidal levels in both freshwater and salt marshes. Canonical correspondence analyses were conducted to examine the relationship between plant communities and edaphic factors at the landscape scale (freshwater vs. salt marsh), the zonation scale (high vs. low tidal level) and the patch scale (dominant vs. other species). Soil salinity, moisture content, pH, bulk density, and organic carbon could well explain segregations of plants at the landscape and zonation scales. However, the same factors exhibited only very weak relationships to plant communities at the patch scale. These results suggest that plant communities in the Yangtze estuary are segregated at different spatial scales by different environmental factors. As spatial scale is often not explicitly addressed investigating community assembly rules, our study underscores the importance of scaling for an improved understanding of community organization in coastal wetlands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adam, P., 1990. Saltmarsh Ecology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Auestad, I., K. Rydgren & R. H. Okland, 2008. Scale-dependence of vegetation–environment relationships in semi-natural grasslands. Journal of Vegetation Science 19: 139–148.

    Article  Google Scholar 

  • Baldwin, A. H. & I. A. Mendelssohn, 1998. Response of two oligohaline marsh communities to lethal and nonlethal disturbance. Oecologia 116: 543–555.

    Article  Google Scholar 

  • Bertness, M. D. & A. M. Ellison, 1987. Determinants of pattern in a New England salt marsh plant community. Ecological Monographs 57: 129–147.

    Article  Google Scholar 

  • Bertness, M. D. & S. C. Pennings, 2000. Spatial variation in process and pattern in salt marsh plant communities in eastern North America. In Weinstein, M. P. & D. A. Kreeger (eds), Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, New York: 39–57.

    Google Scholar 

  • Bertness, M. D. & S. D. Hacker, 1994. Physical stress and positive associations among marsh plants. American Naturalist 144: 363–372.

    Article  Google Scholar 

  • Bertness, M. D., 1991. Zonation of Spartina patens and Spartina alterniflora in New England salt marsh. Ecology 72: 138–148.

    Article  Google Scholar 

  • Bertness, M. D., L. Gough & S. W. Shumway, 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842–1851.

    Article  Google Scholar 

  • Crain, C. M., B. R. Silliman, S. L. Bertness & M. D. Bertness, 2004. Physical and biotic drivers of plant distribution across estuarine salinity gradients. Ecology 85: 2539–2549.

    Article  Google Scholar 

  • Cui, B. S., Q. He & Y. An, 2011. Community structure and abiotic determinants of salt marsh plant zonation vary across topographic gradients. Estuaries and Coasts 34: 459–469.

    Article  CAS  Google Scholar 

  • Emery, N. C., P. J. Ewanchuk & M. D. Bertness, 2001. Competition and saltmarsh plant zonation: stress tolerators may be dominant competitors. Ecology 82: 2471–2485.

    Article  Google Scholar 

  • Engels, J. G. & K. Jensen, 2010. Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos 119: 679–685.

    Article  Google Scholar 

  • Ewanchuk, P. J. & M. D. Bertness, 2004. Structure and organization of a northern New England salt marsh plant community. Journal of Ecology 92: 72–85.

    Article  Google Scholar 

  • Forey, E., B. Chapelet, Y. Vitasse, M. Tilquin, B. Touzard & R. Michalet, 2008. The relative importance of disturbance and environmental stress at local and regional scales in French coastal sand dunes. Journal of Vegetation Science 19: 493–502.

    Article  Google Scholar 

  • Gauch, H. G. & R. H. Whittaker, 1981. Hierarchical classification of community data. Journal of Ecology 69: 537–557.

    Article  Google Scholar 

  • Grace, J. B. & R. G. Wetzel, 1981. Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. American Natualist 118: 463–474.

    Article  Google Scholar 

  • Grand, J. & M. J. Mello, 2004. A multi-scale analysis of species–environment relationships: rare moths in a pitch pine–scrub oak (Pinus rigidaQuercus ilicifolia) community. Biological Conservation 119: 495–506.

    Article  Google Scholar 

  • He, Q., B. S. Cui, Y. Z. Cai, J. F. Deng, T. Sun & Z. F. Yang, 2009. What confines an annual plant to two separate zones along coastal topographic gradients? Hydrobiologia 630: 327–340.

    Article  Google Scholar 

  • Hubbell, S. P., 2001. The Unified Neutral Theory of Biodiversity and Biogeography. Princeton University Press, Princeton.

    Google Scholar 

  • Kim, D., D. M. Cairns & J. Bartholdy, 2009. Spatial heterogeneity and domain of scale on the Skallingen salt marsh, Denmark. Danish Journal of Geography 109: 95–112.

    Google Scholar 

  • Kim, D., D. M. Cairns & J. Bartholdy, 2010. Environmental controls on multiscale spatial pattern of salt marsh vegetation. Physical Geography 31: 58–78.

    Article  Google Scholar 

  • Kim, D., D. M. Cairns, J. Bartholdy & C. L. S. Morgan, 2012. Scale-dependent correspondence of floristic and edaphic gradients across salt marsh creeks. Annals of the Association of American Geographers 102: 276–294.

    Article  Google Scholar 

  • Kunza, A. E. & S. C. Pennings, 2008. Patterns of plant diversity in Georgia and Texas salt marshes. Estuaries and Coasts 31: 673–681.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, Cambridge.

    Google Scholar 

  • Levin, S. A., 1992. The problem of pattern and scale in ecology: the Robert H. MacArthur award lecture. Ecology 73: 1943–1967.

    Article  Google Scholar 

  • Liao, C. Z., Y. Q. Luo, L. F. Jiang, X. H. Zhou, X. W. Wu, C. M. Fang, J. K. Chen & B. Li, 2007. Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10: 1351–1361.

    Article  CAS  Google Scholar 

  • Miller, R. E., J. M. ver Hoef & N. L. Fowler, 1995. Spatial heterogeneity in eight central Texas grasslands. Journal of Ecology 83: 919–928.

    Article  Google Scholar 

  • Moffett, K. B., D. A. Robinson & S. M. Gorelick, 2010. Relationship of salt marsh vegetation zonation to spatial patterns in soil moisture, salinity and topography. Ecosystems 13: 1287–1302.

    Article  CAS  Google Scholar 

  • Morzaria-Luna, H., J. C. Callaway, G. Sullivan & J. B. Zedler, 2004. Relationship between topographic heterogeneity and vegetation patterns in a Californian salt marsh. Journal of Vegetation Science 14: 523–530.

    Article  Google Scholar 

  • Münzbergová, Z., 2004. Effect of spatial scale on factors limiting species distributions in dry grassland fragments. Journal of Applied Ecology 92: 854–867.

    Google Scholar 

  • Noe, G. B. & J. B. Zedler, 2001. Spatio-temporal variation of salt marsh seedling establishment in relation to the abiotic and biotic environment. Journal of Vegetation Science 12: 61–74.

    Google Scholar 

  • Odum, W. E., 1988. Comparative ecology of tidal freshwater and salt marshes. Annual Review of Ecology and Systematics 19: 147–176.

    Article  Google Scholar 

  • Palmer, M. W., 1993. Putting things in even better order: the advantages of canonical correspondence analysis. Ecology 74: 2215–2230.

    Article  Google Scholar 

  • Pennings, S. C. & C. L. Richards, 1998. Effects of wrack burial in salt-stressed habitats: Batis maritima in a southwest Atlantic salt marsh. Ecography 21: 630–638.

    Article  Google Scholar 

  • Pennings, S. C. & R. M. Callaway, 1992. Salt marsh plant zonation: the relative importance of competition and physical factors. Ecology 73: 681–690.

    Article  Google Scholar 

  • Pennings, S. C., E. R. Selig, L. T. Houser & M. D. Bertness, 2003. Geographic variation in positive and negative interactions among salt marsh plants. Ecology 84: 1527–1538.

    Article  Google Scholar 

  • R Development Core Team, 2008. R: A Language and Environment for statistical Computing. R Foundation for Statistical Computing, Vienna.

    Google Scholar 

  • Reed, R. A., R. K. Peet, M. W. Palmer & P. S. White, 1993. Scale dependence of vegetation-environment correlations: a case study of a North Carolina piedmont woodland. Journal of Vegetation Science 4: 329–340.

    Article  Google Scholar 

  • Reitalu, T., H. Prentice, M. Sykes, M. Lonn, L. Johansson & K. Hall, 2008. Plant species segregation on different spatial scales in semi-natural grasslands. Journal of Vegetation Science 19: 407–416.

    Article  Google Scholar 

  • Shipley, B., P. A. Keddy & L. P. Lefkovitch, 1991. Mechanisms producing plant zonation along a water depth gradient: a comparison with the exposure gradient. Canadian Journal of Botany 69: 1420–1424.

    Article  Google Scholar 

  • Sims, J. R. & V. A. Haby, 1971. Simplified colorimetric determination of soil organic matter. Soil Science 112: 137–141.

    Article  CAS  Google Scholar 

  • Stohlgren, T. J., R. R. Bachand, Y. Onami & D. Binkley, 1998. Species–environment relationships and vegetation patterns: effects of spatial scale and tree life-stage. Plant Ecology 135: 215–228.

    Article  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. Canoco for Windows 4.5. Biometris-Plant Research International, Wageningen.

    Google Scholar 

  • Traut, B. H., 2005. The role of coastal ecotones: a case study of the salt marsh/upland transition zone in California. Journal of Applied Ecology 93: 279–290.

    Google Scholar 

  • Varty, A. K. & J. B. Zedler, 2008. How waterlogged microsites help an annual plant persist among salt marsh perennials. Estuaries and Coasts 31: 300–312.

    Article  Google Scholar 

  • Wang, Q., 2007. The dynamics of plant community distribution of the salt marshes in the Yangtze River Estuary as influenced by Spartina alterniflora invasions. PhD Thesis, Fudang University, Shanghai.

  • Wang, C. H., 2010. Effects of environmental variation on growth, distribution of and interspecific interactions among dominant marsh plants at Chongming Dongtan. PhD Thesis, Fudang University, Shanghai.

  • Wang, Q., C. H. Wang, B. Zhao, Z. J. Ma, Y. Q. Luo, J. K. Chen & B. Li, 2006. Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biological Invasions 8: 1547–1560.

    Article  Google Scholar 

  • Wang, C., M. Lu, B. Yang, Q. Yang, X. Zhang, T. Hara & B. Li, 2010. Effects of environmental gradients on the performances of four dominant plants in a Chinese saltmarsh: implications for plant zonation. Ecological Research 25: 1–12.

    Article  Google Scholar 

  • Watson, E. B. & R. Byrne, 2009. Abundance and diversity of tidal marsh plants along the salinity gradient of the San Francisco Estuary: implications for global change ecology. Plant Ecology 205: 113–128.

    Article  Google Scholar 

  • Weiher, E. & P. A. Keddy, 1995. Assembly rules, null models, and trait dispersion: new questions from old patterns. Oikos 74: 159–164.

    Article  Google Scholar 

  • Whittaker, R. J. & E. Heegaard, 2003. What is the observed relationship between species richness and productivity? Comment. Ecology 84: 3384–3390.

    Article  Google Scholar 

  • Whittaker, R. J., K. J. Willis & R. Field, 2001. Scale and species richness: towards a general, hierarchical theory of species diversity. Journal of Biogeography 28: 453–470.

    Article  Google Scholar 

  • Wiens, J. A., 1989. Spatial scaling in ecology. Functional Ecology 3: 385–397.

    Article  Google Scholar 

  • Więski, K., H. Guo, C. B. Craft & S. C. Pennings, 2010. Ecosystem functions of tidal fresh, brackish, and salt marshes on the Georgia Coast. Estuaries and Coasts 33: 161–169.

    Article  Google Scholar 

  • Wilson, S. D. & P. A. Keddy, 1985. Plant zonation on a shoreline gradient: physiological response curves of component species. Journal of Ecology 73: 851–860.

    Article  Google Scholar 

  • Wilson, S. D. & P. A. Keddy, 1986. Species competitive ability and position along a natural stress/disturbance gradient. Ecology 67: 1236–1242.

    Article  Google Scholar 

  • Zedler, J. B., J. C. Callaway, J. S. Desmond, G. Vivian-Smith, G. D. Williams, G. Sullivan, A. E. Brewster & B. K. Bradshaw, 1999. Californian salt-marsh vegetation: an improved model of spatial pattern. Ecosystems 2: 19–35.

    Article  Google Scholar 

Download references

Acknowledgments

We thank Cheng-Huan Wang and Qiang Yang for field help and discussion, Guo-Xian Song for access to the study sites, and two anonymous reviewers for critical comments. This study was financially supported by National Natural Science Foundation of China (U0833002), National Key Basic Research Program of China (2006CB403303) and China National Funds for Distinguished Young Scientists (51125035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan An.

Additional information

Handling editor: K. W. Krauss

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 46 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

He, Q., Chen, F., Cui, B. et al. Multi-scale segregations and edaphic determinants of marsh plant communities in a western Pacific estuary. Hydrobiologia 696, 171–183 (2012). https://doi.org/10.1007/s10750-012-1191-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1191-0

Keywords

Navigation