Skip to main content

Advertisement

Log in

Benthic production, respiration and methane oxidation in Lobelia dortmanna lawns

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Isoetid macrophytes such as Lobelia dortmanna and Littorella uniflora are engineering species with an extensive root system and high radial oxygen loss. Despite several studies on these macrophytes, the effect of their oxygenation on methane dynamics has never been investigated. In this study, we hypothesise that isoetids promote dissolved inorganic carbon fixation and methane oxidation in sandy sediments. Our whole-ecosystem approach study lasted 2 years (2013–2014) on two oligo-mesotrophic shallow lakes. Benthic chamber incubations confirmed that, as a result of primary production and methanotrophy, isoetid lawns had consistently lower benthic carbon fluxes than bare sediments. On a daily basis, vegetated areas acted as a carbon sink (−0.7 ± 0.4 g C m−2 days−1, as DIC + CH4), whereas bare sediments acted as a net source (0.6 ± 0.5 g C m−2 days−1, as DIC + CH4). Photosynthetic quotients of <1 indicated that photosynthetically produced oxygen was not released into the water column, but accumulated in leaf lacunae or was transferred to the rhizosphere, that contributing to the alteration of net benthic fluxes at the sediment–water interface. This preliminary study highlights the necessity of further investigating the role that isoetids play in mitigating greenhouse gas emissions from temperate shallow lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, L. G., P. O. J. Hall, Å. Iverfeldt, B. van der Loeff, B. Sundby & S. F. G. Westerlund, 1986. Benthic respiration measured by total carbonate production. Limnology and Oceanography 31: 319–329.

    Article  CAS  Google Scholar 

  • Arts, G. H. P., 2002. Deterioration of atlantic soft water macrophyte communities by acidification, eutrophication and alkalinisation. Aquatic Botany 73: 373–393.

    Article  CAS  Google Scholar 

  • Attermeyer, K., S. Flury, R. Jayakumar, P. Fiener, K. Steger, V. Arya & K. Premke, 2016. Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake. Scientific Reports 6: 20424.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baastrup-Spohr, L., C. L. Møller & K. Sand-Jensen, 2016. Water-level fluctuations affect sediment properties, carbon flux and growth of the isoetid Littorella uniflora in oligotrophic lakes. Freshwater Biology 61: 301–315.

    Article  CAS  Google Scholar 

  • Bartoli, M., D. Nizzoli & P. Viaroli, 2003. Microphytobenthos activity and fluxes at the sediment-water interface: interactions and spatial variability. Aquatic Ecology 37: 341–349.

    Article  CAS  Google Scholar 

  • Bastviken, D., J. Cole, M. Pace & L. Tranvik, 2004. Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Global Biogeochemical Cycles 18(4): 1–12.

    Article  Google Scholar 

  • Bastviken, D., L. J. Tranvik, J. A. Downing, P. M. Crill & A. Enrich-Prast, 2011. Freshwater methane emissions offset the continental carbon sink. Science 331: 50.

    Article  CAS  PubMed  Google Scholar 

  • Bertrin, V., S. Boutry, A. Dutartre & E. Lambert, 2013. Communautés de Characées des lacs médocains (Sud-Ouest de la France). Eléments d’écologie et de distribution. Acta Botanica Gallica: Botany Letters 160: 131–140.

    Article  Google Scholar 

  • Bolpagni, R., E. Pierobon, D. Longhi, D. Nizzoli, M. Bartoli, M. Tomaselli & P. Viaroli, 2007. Diurnal exchanges of CO2 and CH4 across the water-atmosphere interface in a water chestnut meadow (Trapa natans L.). Aquatic Botany 87: 43–48.

    Article  CAS  Google Scholar 

  • Boon, P. I. & B. K. Sorrell, 1991. Biogeochemistry of billabong sediments. The effect of macrophytes. Freshwater Biology 26: 209–226.

    Article  CAS  Google Scholar 

  • Boston, H. L. & M. S. Adams, 2007. Productivity, growth and photosynthesis of two small isoetid plants Littorella uniflora and Isoetes macrospora. Journal of Ecology 75: 333–350.

    Article  Google Scholar 

  • Canfield, D.E., B.B. Jørgensen, H. Fossing, R. Glud, J. Gundersen, N.B. Ramsing …& P.O. Hall, 1993. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology 113: 27–40

  • Caraco, N. F. & J. J. Cole, 2002. Contrasting impacts of a native and alien macrophyte on dissolved oxygen in a large river. Ecological Applications 5: 1496–1509.

    Article  Google Scholar 

  • Cellamare, M., S. Morin, M. Coste & J. Haury, 2012. Ecological assessment of French Atlantic lakes based on phytoplankton, phytobenthos and macrophytes. Environmental Monitoring and Assessment 184: 4685–4708.

    Article  CAS  PubMed  Google Scholar 

  • Clément, B. & A. Aidoud, 2009. Resistance against eutrophication based on 40-year diachronic study (1966–2006) on marginal wetlands of oligotrophic shallow lakes in south-west of France. Rapport du projet européen Eurolimpacs 2009, 27 pp.

  • Dean Jr., W. E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Research 44(1): 242–248.

    CAS  Google Scholar 

  • den Heyer, C. & J. Kalff, 1998. Organic matter mineralization rates in sediments: a within- and among-lake study. Limnology and Oceanography 43: 695–705.

    Article  Google Scholar 

  • Ding, W., Z. Cai & H. Tsuruta, 2005. Plant species effects on methane emissions from freshwater marshes. Atmospheric Environment 39: 3199–3207.

    Article  CAS  Google Scholar 

  • Duan, X., X. Wang, Y. Mu & Z. Ouyang, 2005. Seasonal and diurnal variations in methane emissions from Wuliangsu Lake in arid regions of China. Atmospheric Environment 39(25): 4479–4487.

    Article  CAS  Google Scholar 

  • Dutartre, A., 1984. Données préliminaires sur les macrophytes immergées du lac de Biscarosse-Cazaux-Sanguinet (Aquitaine). Revue française des sciences de l’eau 3: 409–419.

    Google Scholar 

  • Farmer, A. M. & D. H. N. Spence, 1987. Environmental control of the seasonal growth of the submersed aquatic macrophyte Lobelia dortmanna L. New Phytologist 106: 289–299.

    Article  Google Scholar 

  • Froelich, P.N., G.P. Klinkhammer, M.A.A. Bender, N.A. Luedtke, G.R. Heath, D. Cullen … & V. Maynard, 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochimica et Cosmochimica Acta 43: 1075–1090.

  • Heilman, M. & R. G. Carlton, 2001. Methane oxidation associated with submerged vascular macrophytes and its impact on plant diffusive methane flux. Biogeochemistry 52: 207–224.

    Article  Google Scholar 

  • Hirota, M., Y. Tang, Q. Hu, S. Hirata, T. Katoa, W. Mo, G. Cao & S. Mariko, 2004. Methane emissions from different vegetation zones in a Qinghai-Tibetan Plateau wetland. Soil Biology & Biochemistry 36: 737–748.

    Article  CAS  Google Scholar 

  • Hunding, C., 1973. Diel variation in oxygen production and uptake in a microbenthic littoral community of a nutrient-poor lake. Oikos 24: 352–360.

    Article  Google Scholar 

  • Kufel, L., E. Biardzka & M. Strzałek, 2013. Calcium carbonate incrustation and phosphorus fractions in five charophyte species. Aquatic Botany 109: 54–57.

    Article  CAS  Google Scholar 

  • Lorenzen, C. J., 1967. Determination of chlorophyll and phaeopigments: spectrophotometric equations. Limnology and Oceanography 12: 343–346.

    Article  CAS  Google Scholar 

  • Madsen, T. V., 1987. Interactions between internal and external CO2 pools in the photosynthesis of the aquatic plants Littorella uniflora (L.) Aschers and Isoetes lacustris L. New Phytologist 106: 35–50.

    Article  Google Scholar 

  • McAuliffe, C., 1971. GC determination of solutes by multiple phase equilibrium. Chemical Technology 1: 46–51.

    Google Scholar 

  • Møller, C. L. & K. Sand-Jensen, 2012. Rapid oxygen exchange across the leaves of Littorella uniflora provides tolerance to sediment anoxia. Freshwater Biology 57: 1875–1883.

    Article  Google Scholar 

  • Nizzoli, D., E. Carraro, V. Nigro & P. Viaroli, 2010. Effect of organic enrichment and thermal regime on denitrification and dissimilatory nitrate reduction to ammonium (DNRA) in hypolimnetic sediments of two lowland lakes. Water Research 44: 2715–2724.

    Article  CAS  PubMed  Google Scholar 

  • Pedersen, O., C. Pulido, S. M. Rich & T. D. Colmer, 2011. In situ O2 dynamics in submerged Isoetes australis: varied leaf gas permeability influences underwater photosynthesis and internal O2. Journal of Experimental Botany 62: 4691–4700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peixoto, R. B., H. Marotta, D. Bastviken & A. Enrich-Prast, 2016. Floating aquatic macrophytes can substantially offset open water CO2 emissions from tropical floodplain lake ecosystems. Ecosystems 19: 724–736.

    Article  CAS  Google Scholar 

  • Pinardi, M., M. Bartoli, D. Longhi, U. Marzocchi, A. Laini, C. Ribaudo & P. Viaroli, 2009. Benthic metabolism and denitrification rates in a river reach: a comparison between vegetated and bare sediments. Journal of Limnology 68: 133–145.

    Article  Google Scholar 

  • Pukacz, A., M. Pelechaty & M. Frankowski, 2014. Carbon dynamics in a hardwater lake: effect of charophyte biomass on carbonate deposition. Polish Journal of Ecology 62(4): 695–705.

    Article  Google Scholar 

  • Pulido, C., E. Lucassen, O. Pedersen & M. Roelofs, 2010. Influence of quantity and lability of sediment organic matter on the biomass of two isoetids, Littorella uniflora and Echinodorus repens. Freshwater Biology 56: 939–951.

    Article  Google Scholar 

  • Racchetti, E., M. Bartoli, C. Ribaudo, D. Longhi, E. Q. L. Brito, C. Naldi, P. Iacumin & P. Viaroli, 2010. Short term changes in pore water chemistry in river sediments during the early colonization by Vallisneria spiralis. Hydrobiologia 652: 127–137.

    Article  CAS  Google Scholar 

  • Ribaudo, C., M. Bartoli, E. Racchetti, D. Longhi & P. Viaroli, 2011. Seasonal fluxes of O2, DIC and CH4 in sediments with Vallisneria spiralis: indications for radial oxygen loss. Aquatic Botany 94: 134–142.

    Article  CAS  Google Scholar 

  • Ribaudo, C., M. Bartoli, D. Longhi, S. Castaldi, S. C. Neubauer & P. Viaroli, 2012. CO2 and CH4 fluxes across a Nuphar lutea (L.) Sm. stand. Journal of Limnology 71: 200–210.

    Article  Google Scholar 

  • Ribaudo, C., V. Bertrin & A. Dutartre, 2014. Dissolved gas and nutrient dynamics within an Egeria densa Planch. bed. Acta Botanica Gallica: Botany Letters 161: 233–241.

    Article  CAS  Google Scholar 

  • Rich, P. H. & R. G. Wetzel, 1978. Detritus in the lake ecosystem. American Naturalist 112: 57–71.

    Article  Google Scholar 

  • Richardson, K., H. Griffiths, M. L. Reed, J. A. Raven & N. M. Griffiths, 1984. Inorganic carbon assimilation in the Isoetids, Isoetes lacustris L. and Lobelia dortmanna L. Oecologia 61: 115–121.

    Article  Google Scholar 

  • Risgaard-Petersen, N. & K. Jensen, 1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnology and Oceanography 42: 529–537.

    Article  CAS  Google Scholar 

  • Roelofs, J. G. M., J. A. A. R. Schuurkes & A. J. M. Smits, 1984. Impact of acidification and eutrophication on macrophyte communities in soft waters. II. Experimental studies. Aquatic Botany 18: 389–411.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & M. Søndergaard, 1979. Distribution and quantitative development of aquatic macrophytes in relation to sediment characteristics in oligotrophic Lake Kalgaard, Denmark. Freshwater Biology 9: 1–11.

    Article  CAS  Google Scholar 

  • Sand-Jensen, K. & C. Prahl, 1982. Oxygen exchange with the lacunae and across the leaves and roots of the submerged vascular macrophyte Lobelia dortmanna L. New Phytologist 91: 103–120.

    Article  Google Scholar 

  • Schuurkes, J. A. A. R., C. J. Kok & C. den Hartog, 1986. Ammonium and nitrate uptake by aquatic plants from poorly buffered and acidified waters. Aquatic Botany 24: 131–146.

    Article  Google Scholar 

  • Siong, K. & T. Asaeda, 2009. Effect of magnesium on charophytes calcification: implications for phosphorus speciation stored in biomass and sediment in Myall Lake (Australia). Hydrobiologia 632: 247–259.

    Article  CAS  Google Scholar 

  • Soana, E., M. Naldi, S. Bonaglia, E. Racchetti, G. Castaldelli, V. Brüchert, P. Viaroli & M. Bartoli, 2015. Benthic nitrogen metabolism in a macrophyte meadow (Vallisneria spiralis L.) under increasing sedimentary organic matter loads. Biogeochemistry 124: 387–404.

    Article  CAS  Google Scholar 

  • Smolders, A. J. P., E. Lucassen & J. G. M. Roelofs, 2002. The isoetid environment: biogeochemistry and threats. Aquatic Botany 73: 325–350.

    Article  CAS  Google Scholar 

  • Søndergaard, M. & K. Sand-Jensen, 1979. Carbon uptake by leaves and roots of Littorella uniflora (L.) Aschers. Aquatic Botany 6: 1–12.

    Article  Google Scholar 

  • Sorrell, B. K., M. T. Downes & C. L. Stanger, 2002. Methanotrophic bacteria and their activity on submerged aquatic macrophytes. Aquatic Botany 72: 107–119.

    Article  Google Scholar 

  • St.Louis, V. L., C. A. Kelly, É. Duchemin, J. W. M. Rudd & D. M. Rosenberg, 2000. Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50: 766–775.

    Article  Google Scholar 

  • Sweerts, J. P. R., M. J. Baer-Gilissen, A. A. Cornelese & T. E. Cappenberg, 1991. Oxygen-consuming processes at the profundal and littoral sediment-water interface of a small meso-eutrophic lake (Lake Vechten, The Netherlands). Limnology and Oceanography 36(6): 1124–1133.

    Article  CAS  Google Scholar 

  • Tastet, J.-P., R. Lalanne, B. Maurin & B. Dubos, 2008. Geological and archaeological chronology of a late Holocene coastal enclosure: The Sanguinet lake (SW France). Geoarchaeology 23: 131–149.

    Article  Google Scholar 

  • Vanden Berghen, C., 1964. La végétation des rives du lac de Hourtin (Gironde, France). Bulletin du Jardin Botanique de l’Etat à Bruxelles 34: 243–267.

    Article  Google Scholar 

  • van der Nat, F.-J. W. A. & J. J. Middelburg, 1998. Seasonal variation in methane oxidation by the rhizosphere of Phragmites australis and Scirpus lacustris. Aquatic Botany 61: 95–110.

    Article  Google Scholar 

  • van Luijn, F., P. C. M. Boers, L. Lijklema & J.-P. R. A. Sweerts, 1999. Nitrogen fluxes and processes in sandy and muddy sediments from a shallow eutrophic lake. Water Research 33: 33–42.

    Article  Google Scholar 

  • Velasco, J., A. Millan, M. R. Vidal-Abarca, M. L. Suarez, C. Guerrero & M. Ortega, 2003. Macrophytic, epipelic and epilithic primary production in a semiarid Mediterranean stream. Freshwater Biology 48: 1408–1420.

    Article  Google Scholar 

  • Weiss, R. F., 1970. The solubility of nitrogen, oxygen and argon in water and seawater. Deep Sea Research and Oceanographic Abstracts 17: 721–735.

    Article  CAS  Google Scholar 

  • Winkler, L., 1888. Die Bestimmung des in Wasser Gelösten Sauerstoffes. Ber Dtsch Chem Ges 21: 2843–2855.

    Article  Google Scholar 

  • Wium-Andersen, S., 1971. Photosynthetic uptake of free CO2 by the roots of Lobelia dortmanna. Physiologia Plantarum 25: 245–248.

    Article  Google Scholar 

  • Yamamoto, S., J. B. Alcauskas & T. E. Crozier, 1976. Solubility of methane in distilled water and seawater. Journal of Chemical Engineering Data 21: 78–80.

    Article  CAS  Google Scholar 

  • Yoshida, N., H. Iguchi, H. Yurimoto, A. Murakami & Y. Sakai, 2014. Aquatic plant surface as a niche for methanotrophs. Frontiers in Microbiology 5: 30.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yvon-Durocher, G., J. M. Montoya, G. Woodward, J. J. Jones & M. Trimmer, 2011. Warming increases the proportion of primary production emitted as methane from freshwater mesocosms. Global Change Biology 17: 1225–1234.

    Article  Google Scholar 

  • Zilius, M., D. Daunys, J. Petkuviene & M. Bartoli, 2012. Sediment-water oxygen, ammonium and soluble reactive phosphorus fluxes in a turbid freshwater estuary (Curonian lagoon, Lithuania): evidences of benthic microalgal activity. Journal of Limnology 714: 309–319.

    Google Scholar 

  • Zilius, M., M. Bartoli, M. Bresciani, M. Katarzyte, T. Rignis, J. Petkuviene, I. Lubiene, C. Giardino, P. A. Bukaveckas, R. de Wit & A. Razinkovas-Baziukas, 2014. Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuaries and Coasts 37: 680–694.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors wish to thank K. Madarassou and M. Eon for nutrients analyses. T. Huguet, S. Moreira, G. Ducasse, J. Chabanne, J-C. Gregoire and D. Poirier also participated to field and laboratory activities. M. Bartoli (University of Parma, Italy) and A. Dutartre (Agence Régionale pour la Biodiversité - Aquitaine) provided technical and experiential expert advice. This work was funded by AEAG (Agence de l’Eau Adour-Garonne), within the conventions #310330085 and #310330109, by Irstea (Institut de Recherche Sciences et Technologies pour l’Environnement et l’Agriculture) and by Université de Bordeaux - CNRS UMR 5805.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Ribaudo.

Additional information

Handling editor: Sidinei Magela Thomaz

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribaudo, C., Bertrin, V., Jan, G. et al. Benthic production, respiration and methane oxidation in Lobelia dortmanna lawns. Hydrobiologia 784, 21–34 (2017). https://doi.org/10.1007/s10750-016-2848-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-016-2848-x

Keywords

Navigation