Skip to main content

Advertisement

Log in

Adding early-stage engineering species affects advanced-stage organization of shallow-water fouling assemblages

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Although commonly overlooked, processes determining early patterns of species assembly may affect community dynamics and diversity at advanced states. In this study, we followed richness and community structure in experimental units pioneered by single or multiple species, within a given functional group—colonial ascidians, arborescent, and encrusting bryozoans. We tested the hypotheses that richness and community structure are positively affected by founder-richness at more advanced stages, and that such effect may depend on the functional traits of founders (more or less prone to facilitate other species). More diverse founding assemblages of arborescent bryozoans led to richer communities after 1 and 5 months of succession, with no effects observed for the other functional groups. Assemblages started by a single species were dominated by space monopolizers (encrusting bryozoans), while the ones founded by two species were characterized by a higher abundance of engineering forms (arborescent bryozoans), which may provide a physically complex substrate suitable to both the attraction and protection of other species recruits. Both effects on advanced-stage richness and community structure reflect the importance of facilitation through founder diversity and functionality in community organization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adler, P. B., J. HilleRisLambers & J. M. Levine, 2007. A niche for neutrality. Ecology Letters 10: 95–104.

    Article  PubMed  Google Scholar 

  • Allisson, G., 2004. The influence of species diversity and stress intensity on community resistance and resilience. Ecological Monographs 74: 117–134.

    Article  Google Scholar 

  • Almany, G. R., 2004. Priority effects in coral reef fish communities of the Great Barrier Reef. Ecology 85: 2872–2880.

    Article  Google Scholar 

  • Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  • Beisner, B. E., D. T. Hyadon & K. Cuddington, 2003. Alternative stable states in ecology. Frontiers in Ecology and Environment 1: 376–382.

    Article  Google Scholar 

  • Breitburg, D. L., 1985. Development of a subtidal epibenthic community: factors affecting species composition and the mechanisms of succession. Oecologia 65: 173–184.

    Article  PubMed  Google Scholar 

  • Bruno, J. F., J. J. Stachowicz & M. D. Bertness, 2003. Inclusion of facilitation into ecological theory. Trends in Ecology and Evolution 18: 119–125.

    Article  Google Scholar 

  • Bulleri, F., 2009. Facilitation research in marine systems: state of the art, emerging patterns and insights for future developments. Journal of Ecology 97: 1121–1130.

    Article  Google Scholar 

  • Bulleri, F. & M. G. Chapman, 2010. The introduction of coastal infrastructure as a driver of changes in marine environments. Journal of Applied Ecology 47: 26–35.

    Article  Google Scholar 

  • Cardinale, B. J., K. Nelson & M. A. Palmer, 2000. Linking species diversity to the functioning of ecosystems: on the importance of environmental context. Oikos 91: 175–183.

    Article  Google Scholar 

  • Carlton, J. T. & J. B. Geller, 1993. Ecological Roulette – the global transport of nonindigenous marine organisms. Science 261: 78–82.

    Article  Google Scholar 

  • Chang, C. & D. Marshall, 2017. Quantifying the role of colonization history and biotic interactions in shaping communities – a community transplant approach. Oikos 126: 204–211.

    Article  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Oecologia 104: 17430–17434.

    CAS  Google Scholar 

  • Chase, J. M. & J. A. Myers, 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philosophical Transactions of the Royal Society B 366: 2351–2363.

    Article  Google Scholar 

  • Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18: 117–143.

    Article  Google Scholar 

  • Connell, J. H. & R. O. Slatyer, 1977. Mechanisms of succession in natural communities and their role in community stability and organization. American Naturalist 111: 1119–1144.

    Article  Google Scholar 

  • Dahms, H., S. Dobretsov & P. Qian, 2004. The effect of bacterial and diatom biofilms on the settlement of the bryozoan Bugula neritina. Journal of the Experimental Marine Biology and Ecology 313: 191–209.

    Article  Google Scholar 

  • De Meester, L., J. Vanoverbeke, L. J. Kilsdonk & M. C. Urban, 2016. Evolving perspectives on monopolization and priority effects. Trends in Ecology and Evolution 31: 136–146.

    Article  PubMed  Google Scholar 

  • Dean, T. A. & L. E. Hurd, 1980. Development in an estuarine fouling community: the influence of early colonists on later arrivals. Oecologia 46: 295–301.

    Article  PubMed  CAS  Google Scholar 

  • Edmunds, P. J., 2014. Landscape-scale variation in coral reef community structure in the United States Virgin Islands. Marine Ecology Progress Series 509: 137–152.

    Article  Google Scholar 

  • Fargione, J. E., C. S. Brown & D. Tilman, 2003. Community assembly and invasion: an experimental test of neutral versus niche processes. Proceedings of the National Academy of Sciences of USA 100: 8916–8920.

    Article  CAS  Google Scholar 

  • Fukami, T., 2015. Historical contingency in community assembling: integrative niches, species pools, and priority effects. Annual Review of Ecology Evolution and Systematics 46: 1–23.

    Article  Google Scholar 

  • Griffin, J. N., V. Mendez, A. F. Johnson, S. R. Jenkins & A. Foggo, 2009. Functional diversity predicts overyielding effect of species combination on primary productivity. Oikos 118: 37–44.

    Article  Google Scholar 

  • Guillemot, N., M. Kulbicki, P. Chabanet & L. Vigliola, 2011. Functional redundancy patterns reveal non-random assembly rules in a species-rich marine assemblage. PLoS ONE 6: e26735.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hart, D. D., 1992. Community organization in streams: the importance of species interactions, physical factors, and chance. Oecologia 91: 220–228.

    Article  PubMed  Google Scholar 

  • Hart, S. P. & D. J. Marshall, 2009. Spatial arrangement affects population dynamics and competition independent of community composition. Ecology 90: 1485–1491.

    Article  PubMed  Google Scholar 

  • Hata, T., J. S. Madin, V. R. Cumbo, M. Denny, J. Figueiredo, S. Harii, C. J. Thomas & A. H. Baird, 2017. Coral larvae are poor swimmers and require fine-scale reef structure to settle. Scientific Reports 7: 2249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hay, M. E., 2009. Marine chemical ecology: chemical signals and cues structure marine populations, communities and ecosystems. Annual Review of Marine Science 1: 193–212.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hooper, D. U., F. F. Chapin III, J. J. Ewel, A. Hector, P. Inchausti, S. Lavorel, J. H. Lawton, D. M. Lodge, S. Naeem, B. Schmid, H. Setälä, A. J. Symstad, J. Vandermeer & D. A. Wardle, 2005. Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecological Monographs 75: 3–35.

    Article  Google Scholar 

  • Jackson, J. B. C. & L. Buss, 1975. Allelopathy and spatial competition among coral reef invertebrates. Proceedings of the National Academy of Science of USA 72: 5160–5163.

    Article  CAS  Google Scholar 

  • Jones, C. G., J. H. Lawton & M. Shachak, 1994. Organisms as ecosystem engineers. Oikos 69: 373–386.

    Article  Google Scholar 

  • Jurgens, L. & B. Gaylord, 2016. Edge effects reverse facilitation by a widespread foundation species. Scientific Reports. https://doi.org/10.1038/srep37573.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kay, A. M. & M. J. Keough, 1981. Occupation of patches in the epifaunal community on pier pilings and the bivalve Pinna bicolor ar Edithburgh, South Australia. Oecologia 48: 123–130.

    Article  PubMed  Google Scholar 

  • Keough, M. J., 1984. Kin-recognition and the spatial distribution of larvae of the bryozoan Bugula neritina (L.). Evolution 38: 142–147.

    Article  PubMed  Google Scholar 

  • Kittelmann, S. & T. Harder, 2005. Species- and site-specific bacterial communities associated with four bryozoans from the North Sea, Germany. Journal of Experimental Marine Biology and Ecology 327: 201–209.

    Article  Google Scholar 

  • Klingbeil, B. T. & M. R. Willig, 2016. Community assembly in temperate forest birds: habitat filtering, interspecific interactions and priority effects. Evolutionary Ecology 30: 703–722.

    Article  Google Scholar 

  • Koehl, M. A. R., 1982. The interaction of moving water and sessile organisms. Scientific American 274: 124–134.

    Article  Google Scholar 

  • Koehl, M. A. R., 1984. How do benthic organisms withstand moving water? American Zoologist 24: 57–70.

    Article  Google Scholar 

  • Kondoh, M., 2003. Foraging adaptation and the relationship between food-web complexity and stability. Science 299: 1388–1391.

    Article  PubMed  CAS  Google Scholar 

  • Levine, J. M. & J. HilleRisLambers, 2009. The importance of niches for the maintenance of species diversity. Nature 461: 254–257.

    Article  PubMed  CAS  Google Scholar 

  • Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson & J. P. Grime, 2001. Ecology: biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–808.

    Article  PubMed  CAS  Google Scholar 

  • MacArthur, R. H., 1972. Geographical Ecology. Harper and How, New York.

    Google Scholar 

  • Maida, M., P. W. Sammarco & J. C. Coll, 2001. Effects of soft corals on scleratinian coral recruitment. II: allelopathy, spat survivorship and reef community structure. Marine Ecology 22: 397–414.

    Article  Google Scholar 

  • Menge, B. A. & J. P. Sutherland, 1987. Community regulation – variation in disturbance, competition, and predation in relation to environmental-stress and recruitment. American Naturalist 130: 730–757.

    Article  Google Scholar 

  • Mineur, F., E. J. Coo, D. Minchin, K. Bohn, A. MacLeod & C. A. Maggs, 2012. Changing coasts: marine aliens and artificial structures. Oceanography and Marine Biology 50: 189–233.

    Article  Google Scholar 

  • Moore, J. W., J. L. Ruesink & K. A. McDonald, 2004. Impact of supply-side ecology on consumer-mediated coexistence: evidence from a meta-analysis. American Naturalist 163: 480–487.

    Article  PubMed  Google Scholar 

  • Nandakumar, K., 1996. Importance of timing of panel exposure on the competitive outcome and succession of sessile organisms. Marine Ecology Progress Series 131: 191–203.

    Article  Google Scholar 

  • Oricchio, F. T., A. A. V. Flores & G. M. Dias, 2016a. The importance of predation and predator size on the development and structure of a subtropical fouling community. Hydrobiologia 776: 209–219.

    Article  Google Scholar 

  • Oricchio, F. T., G. Pastro, E. A. Vieira, A. A. V. Flores, F. Z. Gibran & G. M. Dias, 2016b. Distinct community dynamics at two artificial habitats in a recreational marina. Marine Environmental Research. https://doi.org/10.1016/j.marenvres.2016.09.010.

    Article  PubMed  Google Scholar 

  • Osman, R. W., 1977. Establishment and development of a marine epi-faunal community. Ecological Monographs 47: 37–63.

    Article  Google Scholar 

  • Osman, R. W., P. Munguia, R. B. Witlatch, R. N. Zajac & J. Hamilton, 2010. Thresholds and multiple community states in marine fouling communities: integrating natural history with management strategies. Marine Ecology Progress Series 413: 277–289.

    Article  Google Scholar 

  • Paine, R. T., 1966. Food web complexity and species diversity. American Naturalist 100: 65–75.

    Article  Google Scholar 

  • Perea, R. & L. Gil, 2014. Shrubs facilitating seedling performance on ungulate-dominated systems: biotic versus abiotic mechanisms of plant facilitation. European Journal of Forest Research 133: 525–534.

    Article  Google Scholar 

  • Russ, G. R., 1980. Effects of predation by fishes, competition, and structural complexity of the substratum on the establishment of a marine epifaunal community. Journal of Experimental Marine Biology and Ecology 42: 55–69.

    Article  Google Scholar 

  • Sharp, J. H., M. K. Winson, S. Wade, P. Newman, B. Bullimore, K. Lock, M. Burton, R. Gibbs & J. S. Porter, 2008. Differential microbial fouling on the marine bryozoan Pentapora fascialis. Journal of the Marine Biological Association of the United Kingdom 88: 705–710.

    Article  CAS  Google Scholar 

  • Shea, K. & P. Chesson, 2002. Community ecology theory as a framework for biological invasions. Trends in Ecology and Evolution 17: 170–176.

    Article  Google Scholar 

  • Srivastava, D. S. & M. Vellend, 2005. Biodiversity-ecosystem function research: is it relevant to conservation? Annual Review of Ecology, Evolution and Systematics 36: 267–294.

    Article  Google Scholar 

  • Stachowicz, J. J., 2001. Mutualism, facilitation and the structure of ecological communities. BioScience 51: 235–246.

    Article  Google Scholar 

  • Stachowicz, J. J. & J. E. Byrnes, 2006. Species diversity, invasion success and ecosystem functioning: disentangling the influence of resource competition, facilitation and extrinsic factors. Marine Ecology Progress Series 311: 251–262.

    Article  Google Scholar 

  • Stachowicz, J. J., R. B. Whitlatch & R. W. Osman, 1999. Species diversity and invasion resistance in a marine ecosystem. Science 286: 1577–1579.

    Article  PubMed  CAS  Google Scholar 

  • Stachowicz, J. J., H. Fried, R. W. Osman & R. B. Whitlatch, 2002. Biodiversity, invasion resistance, and marine ecosystem function: reconciling pattern and process. Ecology 83: 2575–2590.

    Article  Google Scholar 

  • Stachowicz, J. J., J. F. Bruno & J. E. Duffy, 2007. Consequences of biodiversity for marine communities and ecosystems. Annual Review of Ecology, Evolution and Systematics 38: 739–766.

    Article  Google Scholar 

  • Stachowicz, J. J., M. Graham, M. E. S. Bracken & A. I. Szoboszlai, 2008. Diversity enhances cover and stability of seaweed assemblages: the role of heterogeneity and time. Ecology 89: 3008–3019.

    Article  Google Scholar 

  • Stoecker, D., 1980. Relationships between chemical defense and ecology in benthic ascidians. Marine Ecology Progress Series 3: 257–265.

    Article  CAS  Google Scholar 

  • Sutherland, J. P., 1978. Functional roles of Schizoporella and Styela in the fouling community at Beaufort North Carolina. Ecology 59: 257–264.

    Article  Google Scholar 

  • Sutherland, J. P. & R. H. Karlson, 1977. Development and stability of the fouling community at Beaufort, North Carolina. Ecological Monographs 47: 425–446.

    Article  Google Scholar 

  • Tilman, D., 2001. Functional diversity. In Levin, S. A. (ed.), Encyclopedia of Biodiversity. Academic, San Diego.

    Google Scholar 

  • Trowbridge, W. B., 2007. The role of stochasticity and priority effects in floodplain restoration. Ecological Applications 17: 1312–1324.

    Article  PubMed  Google Scholar 

  • Valdivia, N., K. de la Haye, S. R. Jenkins, S. A. Kimmance, R. C. Thompson & M. Molis, 2008. Functional composition, but not richness, affected the performance of sessile suspension-feeding assemblages. Journal of Sea Research. https://doi.org/10.1016/j.seares.2008.12.001.

    Article  Google Scholar 

  • Vellend, M., 2008. Effects of diversity on diversity: consequences of competition and facilitation. Oikos 117: 1075–1085.

    Article  Google Scholar 

  • Vellend, M., 2010. Conceptual synthesis in community ecology. The Quarterly Review of Biology 85: 183–206.

    Article  PubMed  Google Scholar 

  • Vieira, E. A., L. F. L. Duarte & G. M. Dias, 2012. How the timing of predation affects composition and diversity of species in a marine sessile community? Journal of Experimental Marine Biology and Ecology 412: 126–133.

    Article  Google Scholar 

  • Vieira, E. A., G. M. Dias & A. A. V. Flores, 2016. Effects of predation depend on successional stage and recruitment rate in shallow benthic assemblages of the Southwestern Atlantic. Marine Biology 163: 1–12.

    Article  Google Scholar 

  • Vieira, E. A., A. A. V. Flores & G. M. Dias, 2018. Persistence and space preemption explain species-specific founder effects on the organization of marine sessile communities. Ecology and Evolution. https://doi.org/10.1002/ece3.3853.

    Article  PubMed  PubMed Central  Google Scholar 

  • Vogt, J., Y. Lin, A. Pranchai, P. Frohberg, U. Mehlig & U. J. Berger, 2014. The importance of conspecific facilitation during recruitment and regeneration: a case study in degraded mangroves. Basic and Applied Ecology. https://doi.org/10.1016/j.baae.2014.09.005.

    Article  Google Scholar 

  • Wahl, M., H. Link, N. Alexandridis, J. C. Thomason, M. Cifuentes, M. J. Costello, B. A. P. da Gama, K. Hillock, A. J. Hobday, M. J. Kaufmann, S. Keller, P. Kraufvelin, I. Krüger, L. Lauterbach, B. L. Antunes, M. Molis, M. Nakaoka, J. Nyström, Z. Radzi, B. Stochausen, M. Thiel, T. Vence, A. Weseloh, M. Whittle, L. Wiesmann, L. Wunderer, T. Yamakita & M. Lenz, 2011. Re-structuring of marine communities exposed to environmental change: a global study on the interactive effects of species and functional richness. PLoS ONE 6: e19514.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Walls, J. T., D. A. Ritz & A. J. Blackman, 1993. Fouling, surface bacteria and antibacterial agents of four bryozoan species found in Tasmania, Australia. Journal of Experimental Marine Biology and Ecology 169: 1–13.

    Article  CAS  Google Scholar 

  • Walters, L. J. & D. S. Wethey, 1996. Settlement and early post-settlement survival of sessile marine invertebrates on topographically complex surfaces: the importance of refuge dimensions and adult morphology. Marine Ecology Progress Series 137: 161–171.

    Article  Google Scholar 

  • Yang, H., L. Jiang, L. Li, A. Li, M. Wu & S. Wan, 2012. Diversity-dependent stability under mowing and nutrient addition: evidence from a 7-year grassland experiment. Ecology Letters 15: 619–626.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank the Staff at Centro de Biologia Marinha (CEBIMar-USP) and Yacht Club Ilhabela (YCI) for field assistance. Marcel O. Tanaka, Guilherme H. Pereira Filho, Rafael S. Oliveira, José R. Trigo, Fabiane Gallucci and two anonymous reviewers provided helpful suggestions on early versions of this manuscript. EAV thanks Fundação de Amparo à Pesquisa do Estado de São Paulo – FAPESP (Process #2012/18432-1) for the Award of a PhD Scholarship. This is a contribution of the Research Centre for Marine Biodiversity of the University of São Paulo (NP – Biomar/USP).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edson A. Vieira.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Handling editor: Vasilis Valavanis

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vieira, E.A., Dias, G.M. & Flores, A.A.V. Adding early-stage engineering species affects advanced-stage organization of shallow-water fouling assemblages. Hydrobiologia 818, 211–222 (2018). https://doi.org/10.1007/s10750-018-3612-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-018-3612-1

Keywords

Navigation