Skip to main content
Log in

Community assembly: perspectives from phytoplankton’s studies

  • COLIN S. REYNOLDS’ LEGACY
  • Review Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Community assembly (CA) is a topic of growing interest in ecology due to global change, among other reasons. A review of the latter 20 years in plankton CA studies suggests some advancements and drawbacks. Most works deal with groups of same trophic level species and overlook food webs, except the proposal of the PEG model. Phytoplankton has focused the most on theoretical grounds of CA: (i) to find species associations and establish their templates (condition and resource matrices) in order to define assembly rules, (ii) to set the main assembling mechanisms arising from mean-trait studies and environmental constraints, and (iii) to debate on the predictable ability of that view. After the last decade of advancements, CA future will certainly foster not only by considering classical ecological mechanisms (abiotic selection, biotic interactions, history), but also by including evolutionary and metacommunity (i.e. regional) processes. Massive DNA metabarcoding of taxa, incorporation of novel traits (such as the proportional growth rate), consideration of non-dominant species and experimentation on templates and trajectories will certainly tune up and widen our view of CA, a topic very earlier tackled successfully by Colin Reynolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Álvarez-Cobelas, M., J. L. Velasco, A. Rubio & C. Rojo, 1994. The time course of phytoplankton biomass and related limnological factors in shallow and deep lakes: a multivariate approach. Hydrobiologia 275/276(Dev. Hydrobiol. 94): 139–151.

    Google Scholar 

  • Álvarez-Cobelas, M., C. Rojo, J. L. Velasco & A. Baltanás, 2006. Factors controlling planktonic size spectral responses to autumnal circulation in a Mediterranean lake. Freshwater Biology 51: 131–143.

    Google Scholar 

  • Álvarez-Cobelas, M., C. Rojo & J. Benavent-Corai, 2019. Long-term phytoplankton dynamics in a complex temporal realm. Scientific Reports 9: 15967.

    PubMed  PubMed Central  Google Scholar 

  • Anderson, D. M. & K. Rengefors, 2006. Community assembly and seasonal succession of marine dinoflagellates in a temperate estuary: The importance of life cycle events. Limnology and Oceanography 51: 860–873.

    Google Scholar 

  • Angeler, D. G., S. Sánchez-Carrillo, M. A. Rodrigo, M. Álvarez-Cobelas & C. Rojo, 2007. Does seston size structure reflect fish-mediated effects on water quality in a degraded semiarid wetland? Environmental Monitoring and Assessment 125: 9–17.

    PubMed  Google Scholar 

  • Arnoldi, J. F., M. Loreau & B. Haegeman, 2019. The inherent multidimensionality of temporal variability: How common and rare species shape stability patterns. Ecology Letters 22: 1557–1567.

    PubMed  PubMed Central  Google Scholar 

  • Benincà, E., J. Huisman, R. Heerkloss, K. D. Jöhnk, P. Branco, E. H. Van Nes, M. Scheffer & S. P. Ellner, 2008. Chaos in a long-term experiment with a plankton community. Nature 451: 822–825.

    PubMed  Google Scholar 

  • Boit, A. & M. Spencer, 2019. Equivalence and dissimilarity of ecosystem states. Ecological Modelling 396: 12–22.

    Google Scholar 

  • Booth, B. D. & D. W. Larson, 1999. Impact of language, history and choice of system on the study of assembly rules. In Weiher, E. & P. A. Keddy (eds.), Ecological Assembly Rules: Perspectives, Advances, Retreats. Cambridge University Press, Cambridge: 206–227.

    Google Scholar 

  • Borics, G., I. Grigorszky, S. Szabó & J. Padisák, 2000. Phytoplankton associations in a small hypertrophic fishpond in East Hungary during a change from bottom-up to top-down control. Hydrobiologia 424(Dev. Hydrobiol. 150): 79–90.

    Google Scholar 

  • Brasil, J., J. B. O. dos Santos, W. Sousa, R. Fernandes Menezes, V. L. D. M. Huszar & J. L. Attayde, 2020. Rainfall leads to habitat homogenization and facilitates plankton dispersal in tropical semiarid lakes. Aquatic Ecology 54: 225–241.

    CAS  Google Scholar 

  • Braun-Blanquet, J., 1964. Pflanzensociologie. Springer, Wien.

    Google Scholar 

  • Bungartz, F., F. Ziemmeck, N. Tirado, P. Jaramillo, H. Herrera & G. Jimenéz-Uzcátegui, 2011. The neglected majority – biodiversity inventories as an integral part of conservation biology. In Wolff, M. & M. Gardener (eds.), The Role of Science for Conservation. Routledge, New York: 119–142.

    Google Scholar 

  • Büsing, N., 1998. Seasonality of phytoplankton as an indicator of trophic status of the large perialpine ‘Lago di Garda’. Hydrobiologia 369/370(Dev. Hydrobiol. 129): 153–162.

    Google Scholar 

  • Cerini, F., M. A. Bologna & L. Vignoli, 2019. Dragonflies community assembly in artificial habitats: Glimpses from field and manipulative experiments. PLoS ONE 14: e0214127.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chase, J. M., 2003. Community assembly: When should history matter? Oecologia 136: 489–498.

    PubMed  Google Scholar 

  • Chase, J. M., 2007. Drought mediates the importance of stochastic community assembly. Proceeding of the National Academy of Sciences of the United States of America 104: 17430–17434.

    CAS  Google Scholar 

  • Chase, J. M., 2010. Stochastic community assembly causes higher biodiversity in more productive environments. Science 328: 1388–1391.

    CAS  PubMed  Google Scholar 

  • Connor, E. & D. Simberloff, 1979. The assembly of species communities: Chance or competition? Ecology 60: 1132–1140.

    Google Scholar 

  • De los Ríos-Escalante, P. & S. Woelfl, 2017. Use of null models to explain crustacean zooplankton assemblages in North Patagonian lakes with presence or absence of mixotrophic ciliates (38°S, Chile). Crustaceana 90: 311–319.

    Google Scholar 

  • Diamond, J. M., 1975. Assembly of species communities. In Cody, M. L. & J. M. Diamond (eds.), Ecology and Evolution of Communities. Harvard University Press, Cambridge: 342–444.

    Google Scholar 

  • Djurhuus, A., K. Pitz, N. A. Sawaya, J. Rojas-Márquez, B. Michaud, E. Montes, F. Muller-Karger & M. Breitbart, 2018. Evaluation of marine zooplankton community structure through environmental DNA metabarcoding. Limnology and Oceanography: Methods 16: 209–221.

    Google Scholar 

  • Dokulil, M. T., K. Donabaum & K. Teubner (eds), 2018. The Alte Donau: successful restoration and sustainable management: an ecosystem case study of a shallow urban lake. Aquatic Ecology Series, vol 10. Springer, New York, p. 407.

  • Downing, A. L., B. L. Brown & M. A. Leibold, 2014. Multiple diversity–stability mechanisms enhance population and community stability in aquatic food webs. Ecology 95: 173–184.

    PubMed  Google Scholar 

  • Drake, J. A., 1990a. The mechanics of community assembly and succession. Journal of Theoretical Biology 147: 213–233.

    Google Scholar 

  • Drake, J. A., 1990b. Communities as assembled structures: Do rules govern pattern? Trends in Ecology & Evolution 5: 159–164.

    CAS  Google Scholar 

  • Drake, J. A., 1991. Community-assembly mechanics and the structure of an experimental species ensemble. The American Naturalist 137: 1–26.

    Google Scholar 

  • Drake, J. A., G. R. Huxel & C. L. Hewitt, 1996. Microcosms as models for generating and testing community theory. Ecology 77: 670–677.

    Google Scholar 

  • Drake, J. A., C. Zimmerman, T. Purucker & C. Rojo, 1999. On the nature of the assembly trajectory. In Weiher, E. & P. Keddy (eds.), Ecological assembly rules. Cambridge University Press, Cambridge: 233–251.

    Google Scholar 

  • Duarte, C. M., C. Marrasé, D. Vaqué & M. Estrada, 1990. Counting error and the quantitative analysis of phytoplankton communities. Journal of Plankton Research 12: 295–304.

    Google Scholar 

  • Edwards, K. F., E. Litchman & C. A. Klausmeier, 2013. Functional traits explain phytoplankton responses to environmental gradients across lakes of the United States. Ecology 94: 1626–1635.

    PubMed  Google Scholar 

  • Elliott, J. A., A. E. Irish & C. S. Reynolds, 2001. The effects of vertical mixing on a phytoplankton community: a modelling approach to the intermediate disturbance hypothesis. Freshwater Biology 46: 1291–1297.

    Google Scholar 

  • Emerson, B. C. & R. G. Gillespie, 2008. Phylogenetic analysis of community assembly and structure over space and time. Trends in Ecology and Evolution 23: 619–630.

    PubMed  Google Scholar 

  • Fox, J. W., 2008. Testing whether productivity mediates the occurrence of alternate stable states and assembly cycles in a model microcosm system. Oikos 117: 1153–1164.

    Google Scholar 

  • Friedman, J., L. M. Higgins & J. Gore, 2017. Community structure follows simple assembly rules in microbial microcosms. Nature Ecology and Evolution. https://doi.org/10.1038/s41559-017-0109.

    Article  PubMed  Google Scholar 

  • Fu, H., G. Yuan & E. Jeppesen, 2020. Trait-based community assembly of submersed macrophytes subjected to nutrient enrichment in freshwater lakes: Do traits at the individual level matter. Ecological Indicators 110: 105895.

    CAS  Google Scholar 

  • Fukami, T. & P. Morin, 2003. Productivity–biodiversity relationships depend on the history of community assembly. Nature 424: 423–426.

    CAS  PubMed  Google Scholar 

  • Fukami, T., 2004. Assembly history interacts with ecosystem size to influence species diversity. Ecology 85: 3234–3242.

    Google Scholar 

  • Fukami, T., 2010. Chapter 4 Community assembly dynamics in space. In Verhoef, H. A. & P. J. Morin (eds.), Community Ecology: Processes, Models, and Applications. Oxford University Press, Oxford.

    Google Scholar 

  • Gabaldón, C., M. Devetter, J. Hejzlar, K. Šimek, P. Znachor, J. Nedoma & J. Seďa, 2017. Seasonal strengths of the abiotic and biotic drivers of a zooplankton community. Freshwater Biology 64: 1326–1341.

    Google Scholar 

  • Gaedke, U., 1993. Ecosystem analysis based on biomass size distribution – a case study of a plankton community in a large lake. Limnology and Oceanography 38: 112–127.

    Google Scholar 

  • García-Chicote, J., X. Armengol & C. Rojo, 2019. Zooplankton species as indicators of trophic state in reservoirs from Mediterranean river basins. Inland Waters 9: 113–123.

    Google Scholar 

  • Gitay, H., J. B. Wilson & W. G. Lee, 1996. Species redundancy: a redundant concept? Journal of Ecology 84: 121–124.

    Google Scholar 

  • Glynn, P. W., 1973. Ecology of a Caribbean coral reef. The porites reef-flat biotope: Part ii. Plankton community with evidence for depletion. Marine Biology 22: 1–21.

    Google Scholar 

  • Gotelli, N. J. & G. R. Graves, 1996. Null models in ecology. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Graco-Roza, C., J. B. O. Santos, V. L. M. Huszar, P. Domingos, J. Soininen & M. M. Marinho, 2019. Downstream transport processes modulate the effects of environmental heterogeneity on riverine phytoplankton. STOTEN 14 November 2019, 135519. https://doi.org/10.1016/j.scitotenv.2019.135519.

  • Grime, J. P., 1979. Plant strategies and vegetation processes. John Wiley & Sons Ltd, Chichester.

    Google Scholar 

  • Grime, J. P., 2001. Plant strategies, vegetation processes, and ecosystem properties, 2nd ed. John Wiley & Sons Ltd, Chichester.

    Google Scholar 

  • Halassy, M., Z. Botta-Dukát, A. Csecserits, K. Szitár & K. Török, 2019. Trait-based approach confirms the importance of propagule limitation and assembly rules in old-field restoration. Restoration Ecology 27: 840–849.

    Google Scholar 

  • Harpole, W., 2010. Neutral theory of species diversity. Nature Education Knowledge 1: 31.

    Google Scholar 

  • Heino, J., A. S. Melo, T. Siqueira, J. Soininen, S. Valanko & L. M. Bini, 2015. Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshwater Biology 60: 845–869.

    Google Scholar 

  • Hutchinson, G. E., 1978. An Introduction to Population Ecology. Yale University Press, New Haven.

    Google Scholar 

  • Isabwe, A., J. R. Yang, Y. Wang, L. Liua, H. Chena & J. Yang, 2018. Community assembly processes underlying phytoplankton and bacterioplankton across a hydrologic change in a human-impacted river. Science of the Total Environment 630: 658–667.

    CAS  PubMed  Google Scholar 

  • Isabwe, A., K. Ren, Y. Wang, F. Peng, H. Chen & J. Yang, 2019. Community assembly mechanisms underlying the core and random bacterioplankton and microeukaryotes in a river–reservoir system. Water 11: 1–17.

    Google Scholar 

  • Jaksić, F. M., 1981. Abuse and misuse of the term “guild” in ecological studies. Oikos 37: 397–400.

    Google Scholar 

  • Kamenir, Y., Z. Dubinsky & T. Zohary, 2004. Phytoplankton size structure stability in a meso-eutrophic subtropical lake. Hydrobiologia 520: 89–104.

    Google Scholar 

  • Keddy, P. & E. Weiher, 1999. The scope and goals of research on asssembly rules. In Weiher, E. & P. Keddy (eds.), Ecological assembly rules. Cambridge University Press, Cambridge: 1–20.

    Google Scholar 

  • Keddy, P. A., 2000. Wetland ecology. Cambridge University Press, Cambridge: 614.

    Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Google Scholar 

  • Kruk, C., E. T. H. M. Peeters, E. H. Van Nes, V. L. M. Huszar, L. S. Costa & M. Scheffer, 2011. Phytoplankton community composition can be predicted best in terms of morphological groups. Limnology and Oceanography 56: 110–118.

    Google Scholar 

  • Larrosa, J., S. M. Mayeli, E. Mangas-Ramírez, M. A. Rodrigo & C. Rojo, 2006. Alternative final states when Daphnia magna invades a system with Keratella cochlearis. Fundamental and Applied Limnology Archiv fur Hydrobiologie 166: 289–305.

    Google Scholar 

  • Lewington-Pearce, L., A. Narwani, M. K. Thomas, C. T. Kremer, H. Vogler & P. Kratina, 2019. Temperature-dependence of minimum resource requirements alters competitive hierarchies in phytoplankton. Oikos 128: 1194–1205.

    Google Scholar 

  • Legrand, C., K. Rengefors, G. O. Fistarol & E. Granéli, 2003. Allelopathy in phytoplankton - biochemical, ecological and evolutionary aspects. Phycologia 42: 406–419.

    Google Scholar 

  • Leibold, M. A., 1999. Biodiversity and nutrient enrichment in pond plankton communities. Evolutionary Ecology Research 1: 73–95.

    Google Scholar 

  • Leibold, M. A. & J. M. Chase, 2018. Metacommunity ecology. Princeton University Press, Princeton.

    Google Scholar 

  • Lewis Jr., W. M., 1974. Primary production in the plankton community of a tropical lake. Ecological Monographs 44: 377–409.

    Google Scholar 

  • Lewis Jr., W. M., 1979. Zooplankton community analysis studies on a tropical system. Springer-Verlag, New York Inc.

    Google Scholar 

  • Lyons, K. G. & M. W. Schwartz, 2001. Rare species loss alters ecosystem function –invasion resistance. Ecology Letters 4: 358–365.

    Google Scholar 

  • Lyons, K. G., C. A. Brigham, B. Traut & M. W. Schwartz, 2005. Rare species and ecosystem functioning. Conservation Biology 19: 1019–1024.

    Google Scholar 

  • Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. Annual Review of Ecology, Evolution and Systematics 39: 615–639.

    Google Scholar 

  • Magura, T. & G. L. Lovei, 2019. Environmental filtering is the main assembly rule of ground beetles in the forest and its edge but not in the adjacent grassland. Insect Science 26: 154–163.

    PubMed  Google Scholar 

  • Margalef, R., M. Estrada & D. Blasco, 1979. Functional morphology of organisms involved in red tides, as adapted to decaying turbulence. In Taylor, D. L. & H. H. Seliger (eds.), Toxic Dinoflagellate Blooms. Elsevier/North Holland, NY: 89–94.

    Google Scholar 

  • McAlice, B. J., 1970. Observations on the small-scale distribution of estuarine phytoplankton. Marine Biology 7: 100–111.

    Google Scholar 

  • McCaig, A. E., L. A. Glover & J. I. Prosser, 1999. Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Applied and Environmental Microbiology 65: 1721–1730.

    CAS  PubMed  PubMed Central  Google Scholar 

  • McIntosh, R. P., 1967. The continuum concept of vegetation. The Botanical Review 33: 130–187.

    Google Scholar 

  • Menegotto, A., C. S. Dambros & S. A. Netto, 2019. The scale-dependent effect of environmental filters on species turnover and nestedness in an estuarine benthic community. Ecology 100: e02721.

    PubMed  Google Scholar 

  • Narwani, A., M. A. Alexandrou, J. Herrin, A. Vouaux, C. Zhou, T. H. Oakley & B. J. Cardinale, 2015. Common ancestry is a poor predictor of competitive traits in freshwater green algae. PLoS One 10: 9.

    Google Scholar 

  • Naselli-Flores, L. & R. Barone, 1998. Phytoplankton dynamics in two reservoirs with different trophic state (Lake Rosamarina and Lake Arancio, Sicily, Italy). Hydrobiologia 369/370(Dev. Hydrobiol. 129): 163–178.

    Google Scholar 

  • Padisák, J., 1992. Seasonal succession of phytoplankton in a large shallow lake (Balaton, Hungary): a dynamic approach to ecological memory, its possible role and mechanisms. Journal of Ecology 80: 217–230.

    Google Scholar 

  • Padisák, J. & C. S. Reynolds, 1998. Selection of phytoplankton associations in Lake Balaton, Hungary, in response to eutrophication and restoration measures, with special reference to the cyanoprokaryotes. Hydrobiologia 384: 41–53.

    Google Scholar 

  • Padisák, J., G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Google Scholar 

  • Peters, R. H., 1986. The ecological implications of body size. Cambridge University Press, Cambridge.

    Google Scholar 

  • Pielou, E. C., 1975. Mathematical ecology. Wiley, New York, New York, USA: 385.

    Google Scholar 

  • Pinheiro, R. B. P., G. M. Felix, C. F. Dormann & M. A. R. Mello, 2019. A new model explaining the origin of different topologies in interaction networks. Ecology 100: e02796.

    PubMed  Google Scholar 

  • Pomati, F., B. Matthews, O. Seehausen & B. W. Ibelings, 2017. Eutrophication and climate warming alter spatial (depth) co-occurrence patterns of lake phytoplankton assemblages. Hydrobiologia 787: 375–385.

    CAS  Google Scholar 

  • Puche, E., C. Rojo, R. Ramos-Jiliberto & M. A. Rodrigo, 2020. Structure and vulnerability of the multi-interaction network in macrophyte-dominated lakes. Oikos 129: 35–48.

    Google Scholar 

  • Rahel, F. J., J. D. Lyons & P. A. Cochran, 1984. Stochastic or deterministic regulation of assemblage structure? It may depend on how the assemblage is defined. The American Naturalist 124: 583–589.

    Google Scholar 

  • Reynolds, C. S., 1980. Phytoplankton assemblages and their periodicity in stratifying lake system. Holartic Ecology 3: 141–159.

    Google Scholar 

  • Reynolds, C. S., 1987. Community organisation in the freshwater plankton. In Gee, J. R. & P. S. Giller (eds.), Organization of communities, past and present. Blackwell Scientific Publications, Oxford: 297–325.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation processes in the pelagic: A model for ecosystem theory. Excellence in Ecology: Book 9. 371 pp.

  • Reynolds, C. S., 1998. What factors influence the species composition of phytoplankton in lakes of different trophic status? Hydrobiologia 369(370): 11–26.

    Google Scholar 

  • Reynolds, C. S., M. Dokulil & J. Padisák, 2000. The trophic spectrum revisited. Hydrobiologia 424. Kluwer Academic Publishers, The Netherlands.

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Google Scholar 

  • Reynolds, C. S., 2003. Planktic community assembly in flowing water and the ecosystem health of rivers. Ecological Modelling 160: 191–203.

    Google Scholar 

  • Reynolds, C. S., 2012. Environmental requirements and habitat preferences of phytoplankton: chance and certainty in species selection. Botanica Marina 55: 1–17.

    Google Scholar 

  • Ricklefs, R. E., 2008. Disintegration of the ecological community. The American Naturalist 172: 741–750.

    PubMed  Google Scholar 

  • Ripl, W. & K.-D. Wolter, 2003. Ecosystem function and degradation. In Williams, P. J., Le B., D.N. Thomas & C.S. Reynolds (eds), Phytoplankton productivity: carbon assimilation in marine and freshwater ecosystems. Blackwell Science, Oxford: 291–317.

  • Rodrigo, M. A., C. Rojo, M. Segura & J. Larrosa, 2009. Mechanisms of microalgae selection during the assembly of a planktonic community. Aquatic Ecology 43: 61–72.

    Google Scholar 

  • Rojo, C. & J. Rodríguez, 1994. Seasonal variability of phytoplankton size structure in a hypertrophic lake. Journal of Plankton Research 16: 317–335.

    Google Scholar 

  • Rojo, C., 1998. Differential attributes of phytoplankton across the trophic gradient: a conceptual landscape with gaps. Hydrobiologia 369(370): 1–9.

    Google Scholar 

  • Rojo, C. & M. Alvarez-Cobelas, 2000. A plea for more ecology in phytoplankton ecology. Hydrobiologia 424 (Dev. Hydrobiol. 150): 141–146.

  • Rojo, C., E. Ortega-Mayagoitia & M. Alvarez-Cobelas, 2000. Lack of pattern among phytoplankton assemblages. Or, what does the exception to the rule mean? Hydrobiologia 424 (Dev. Hydrobiol. 150): 133–139.

  • Rojo, C. & M. Alvarez-Cobelas, 2001. Phytoplankton structure and dynamics at a daily temporal scale: Response to the thermal overturn. Fundamental and Aplied Limnology Archiv für Hydrobiologie 151: 549–569.

    Google Scholar 

  • Rojo, C. & M. Álvarez-Cobelas, 2003. Are there steady-state phytoplankton assemblages in the field? Hydrobiologia 502 (Dev. Hydrobiol. 172): 3–12.

  • Rojo, C., M. A. Rodrigo & M. Álvarez-Cobelas, 2006. Plankton diversity is the outcome of an assembly process. Internationale Vereinigung für theoretische und angewandte Limnologie 29: 1906–1908.

    Google Scholar 

  • Rojo, C., M. A. Rodrigo, G. Salazar & M. Álvarez-Cobelas, 2008. Nitrate uptake rates in freshwater plankton: the effect of food web structure. Marine and Freshwater Research 59: 717–725.

    CAS  Google Scholar 

  • Rojo, C., M. M. Barón-Rodríguez, M. Álvarez-Cobelas & M. A. Rodrigo, 2010. Sustained primary production with changing phytoplankton assemblages in a semiarid wetland. Hydrobiologia 639: 55–62.

    CAS  Google Scholar 

  • Rojo, C., G. Herrera, M. A. Rodrigo, M. J. Ortíz-Llorente & P. Carrillo, 2012. Mixotrophic phytoplankton is enhanced by UV radiation in a low altitude, P-limited Mediterranean lake. Hydrobiologia 698 (Dev. Hydrobiol. 221): 97–110.

  • Rojo, C., M. Segura & M. A. Rodrigo, 2013. The allelopathic capacity of submerged macrophytes shapes the microalgal assemblages from a recently restored coastal wetland. Ecological Engineering 58: 149–155.

    Google Scholar 

  • Rojo, C., F. Mesquita-Joanes, J. S. Monrós, J. Armengol, M. Sasa, F. Bonilla, R. Rueda, J. Benavent-Corai, R. Piculo & M. Segura, 2016. Hydrology affects environmental and spatial structuring of microalgal metacommunities in tropical pacific coast wetlands. PLoS ONE 11: e0149505.

    PubMed  PubMed Central  Google Scholar 

  • Rojo, C., Z. Mosquera, M. Álvarez-Cobelas & M. Segura, 2017. Microalgal and cyanobacterial assemblages on charophytes: a metacommunity perspective. Fundamental and Applied Limnology Archiv für Hydrobiologie 190: 97–115.

    Google Scholar 

  • Salmaso, N., 2003. Life strategies, dominance patterns and mechanisms promoting species coexistence in phytoplankton communities along environmental gradients. Hydrobiologia 502: 13–36.

    Google Scholar 

  • Samuels, C. & J. A. Drake, 1997. Divergent perspectives on community convergence. Trends in Ecology & Evolution 12: 427–432.

    CAS  Google Scholar 

  • Santana, L. M., G. Weithoff & C. Ferragut, 2017. Seasonal and spatial functional shifts in phytoplankton communities of five tropical reservoirs. Aquatic Ecology 51: 531–543.

    CAS  Google Scholar 

  • Sauterey, B., B. A. Ward, J. Rault, C. Bowler & D. Claessen, 2017. The implications of eco-evolutionary processes for the emergence of marine plankton community biogeography. The American Naturalist 190: 116–130.

    PubMed  Google Scholar 

  • Shipe, R. F., A. Leinweber & N. Gruber, 2008. Abiotic controls of potentially harmful algal blooms in Santa Monica Bay, California. Continental Shelf Research 28: 2584–2593.

    Google Scholar 

  • Schleuning, M., E. L. Neuschulz, J. Albrecht, I. M. A. Bender, D. E. Bowler, D. M. Dehling, S. A. Fritz, C. Hof, T. Mueller, L. Nowak, M. C. Sorensen, K. Böhning-Gaese & W. D. Kissling, 2020. Trait-Based Assessments of Climate-Change Impacts on Interacting Species. Trends in Ecology & Evolution 35: 319–328.

    Google Scholar 

  • Smayda, T. J. & C. S. Reynolds, 2001. Community assembly in marine phytoplankton: application of recent models to harmful dinoflagellate blooms. Journal of Plankton Research 23: 447–461.

    Google Scholar 

  • Sommer, U., Z. M. Gliwicz, W. Lampert & A. Duncan, 1986. The PEG model of a seasonal succession of planktonic events in fresh waters. Fundamental and Applied Limnology Archiv fur Hydrobiologie 106: 433–471.

    Google Scholar 

  • Sommer, U., 1991. Phytoplankton: directional succession and forced cycles. In Remmert H. (ed), The mosaic-cycle concept of ecosystems. Ecological studies (Analysis and synthesis), vol 85. Springer, Berlin, Heidelberg.

  • Sommer, U., J. Padisák, C. S. Reynolds & P. Juhász-Nagy, 1993. Hutchinson’s heritage: the diversity-disturbance relationship in phytoplankton. Hydrobiologia 249: 1–7.

    Google Scholar 

  • Sommer, U., R. Adrian, L. De Senerpont Domis, J. J. Elser, U. Gaedke, B. Ibelings, E. Jeppesen, M. Lürling, J. C. Molinero, W. M. Mooij, E. van Donk & M. Winder, 2012. Beyond the plankton ecology group (PEG) model: mechanisms driving plankton succession. Annual Review of Ecology, Evolution and Systematics 43: 429–448. .

    Google Scholar 

  • Southwood, T. R. E., 1977. Habitat, the templet for ecological strategies? Journal of Animal Ecology 46: 337–365.

    Google Scholar 

  • Spatharis, S., D. Mouillot, T. D. Chi, D. B. Danielidis & G. Tsirtsis, 2009. A niche-based modelling approach to phytoplankton community assembly rules. Oecologia 159: 171–180.

    PubMed  Google Scholar 

  • Steiner, C. F. & M. A. Leibold, 2004. Cyclic assembly trajectories and scale-dependent productivity–diversity relationships. Ecology 85: 107–113. .

    Google Scholar 

  • Temperton, V. M. & R. J. Hobbs, 2004. The search for ecological assembly rules and its relevance to restoration ecology. In Temperton, V. M., R.J. Hobbs, T. Nuttle & and S. Halle (eds), Assembly rules and restoration ecology–bridging the gap between theory and practice. Island Press, Washington DC: 34–54.

  • Teubner, K., W. Kabas & I. E. Teubner, 2018. Phytoplankton in Alte Donau: response to trophic change from hypertrophic to mesotrophic over 22 years. In Dokulil M., K. Donabaum, K. Teubner (eds), The Alte Donau: Successful restoration and sustainable management. Aquatic Ecology Series 10. Springer, Cham.

  • Thackeray, S. J., 2007. Crustacean zooplankton species richness and productivity: to what extent do the conclusions depend upon the choice of metrics? Oikos 116: 614–628.

    CAS  Google Scholar 

  • Tilman, D., S. S. Kilham & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.

    Google Scholar 

  • Tilman, D., 2004. Niche tradeoffs, neutrality, and community structure: A stochastic theory of resource competition, invasion, and community assembly. Proceedings of the National Academy of Sciences of the United States of America 101: 10854–10861.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trifonova, I., 1998. Phytoplankton composition and biomass structure in relation to trophic gradient in some temperate and subarctic lakes of north-western Russia and the Prebaltic. Hydrobiologia 369: 99–108.

    Google Scholar 

  • Viehberg, F. A. & F. Mesquita-Joanes, 2012. Quantitative transfer function approaches in palaeoclimatic reconstruction using Quaternary ostracods. Developments in Quaternary Science 17: 47–64.

    Google Scholar 

  • Villéger, S., N. W. H. Mason & D. Mouillot, 2008. New multidimensional functional diversity indices for a multifaceted framework in functional ecology. Ecology 89: 2290–2301.

    PubMed  Google Scholar 

  • Ward, B. A., S. Dutkiewicz & M. J. Follows, 2014. Modelling spatial and temporal patterns in size-structured marine plankton communities: top-down and bottom-up controls. Journal of Plankton Research 36: 31–47.

    Google Scholar 

  • Warren, P. H., R. Law & A. J. Weatherby, 2003. Mapping the assembly of protist communities in microcosms. Ecology 84: 1001–1011.

    Google Scholar 

  • Weiher, E. & P. Keddy, 1999. Assembly rules as general constraints on community composition. In Weiher, E. & P. Keddy (eds.), Ecological assembly rules. Cambridge University Press, Cambridge: 251–271.

    Google Scholar 

  • Weiher, E., D. Freund, T. Bunton, A. Stefanski, T. Lee & S. Bentivenga, 2011. Advances, challenges and a developing synthesis of ecological community assembly theory. Philosophical Transactions of the Royal Society B 366: 2403–2413.

    Google Scholar 

  • Weithoff, G. & B. E. Beisner, 2019. Measures and approaches in trait-based phytoplankton community ecology – from freshwater to marine ecosystems. Frontiers in Marine Sciences 6: 40.

    Google Scholar 

  • Whittaker, R. H. & C. W. Fairbanks, 1958. A study of plankton copepod communities in the Columbia Basin, southeastern Washington. Ecology 39: 40–69.

    Google Scholar 

  • Wu, J. X., C. B. Wilsey, L. Taylor & G. W. Schuurman, 2018. Projected avifaunal responses to climate change across the U.S. National Park System. PLoS ONE 13: e0190557.

  • Xue, Y., H. Chen, J. R. Yang, M. Liu, B. Huang & J. Yang, 2018. Distinct patterns and processes of abundant and rare eukaryotic plankton communities following a reservoir cyanobacterial bloom. The ISME Journal 12: 2263–2277.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., J. Robert, K. Liu, W. Qi & W. X. Long, 2019. Using functional trait diversity patterns to disentangle the processes influencing the recovery of subalpine grasslands following abandonment of agricultural use. Frontiers in Ecology and Evolution 7: 128.

    Google Scholar 

  • Zinger, L., P. Taberlet, H. Schimann, A. Bonin, F. Boyer, et al., 2019. Body size determines soil community assembly in a tropical forest. Molecular Ecology 28: 528–543.

    CAS  PubMed  Google Scholar 

Download references

Ackowledgements

I thank Miguel Álvarez-Cobelas who (i) introduced me to the world of phytoplankton and introduced me to Colin Reynolds; (ii) helped me with this manuscript by searching for hard-to-obtain literature (Judith Padisák also helped me with this task); and (iii) read the drafts and gave me his invaluable critical opinion. Reviewers and editors have also contributed to improve this manuscript. And last but not least, I thank Colin Reynolds for opening and addressing hot topics in community ecology in so many ways.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmen Rojo.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Judit Padisák, J. Alex Elliott, Martin T. Dokulil & Luigi Naselli-Flores / New, old and evergreen frontiers in freshwater phytoplankton ecology: the legacy of Colin S. Reynolds

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 143 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rojo, C. Community assembly: perspectives from phytoplankton’s studies. Hydrobiologia 848, 31–52 (2021). https://doi.org/10.1007/s10750-020-04249-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-020-04249-3

Keywords

Navigation