Skip to main content

Advertisement

Log in

Impacts of fine sediment input on river macroinvertebrates: the role of the abiotic characteristics at mesohabitat scale

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Instream hydraulics and riverbed substrate allow for the identification of mesohabitats, and contribute in shaping benthic macroinvertebrate assemblages. However, the role of different depositional conditions between mesohabitats in determining macroinvertebrate response to large sediment input still needs investigation. We studied the evolution of sediment deposits and benthic assemblages in two mesohabitats (a riffle and a glide) of an Alpine river affected by an extreme sediment input. Substrate and hydraulic characteristics were measured in each mesohabitat for 18 months after the sedimentation event. Benthic macroinvertebrates were sampled concurrently, and available pre-event data allowed for before/after comparison. We found evidence of a different response of benthic communities to siltation, associated to the physical structure of the mesohabitat they inhabit. Both substrate and macroinvertebrates were less impacted and recovered faster in the riffle than in the glide. Assemblages in the glide adjusted to the modified habitat through strong proliferation of sand tolerant and preferring families, resulting in higher density and lower diversity compared to the riffle. Our results could support the improvement of the impact assessment of sediment input events. This is particularly relevant given the current global warming, inducing the increase in frequency and intensity of severe rainfall events, and subsequent landslides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

Data are available from the authors upon reasonable request.

References

  • APAT & IRSA-CNR, 2003a. Metodi analitici per le acque—Indicatori biologici—2090. Solidi. [Analytical methods for water—Biological indicators—2090. Solids.] APAT Manuali e line guida 29/2003, Roma.

  • APAT & IRSA-CNR, 2003b. Metodi analitici per le acque—Indicatori biologici—9020. Determinazione della clorofilla: metodo spettrofotometrico. [Analytical methods for water—Biological indicators—9020. Chlorophyll detection: spectrophotometric method.] APAT Manuali e line guida 29/2003, Roma.

  • Bo, T., S. Fenoglio, G. Malacarne, M. Pessino & F. Sgariboldi, 2007. Effects of clogging on stream macroinvertebrates: an experimental approach. Limnologica 37(2): 186–192.

    Article  Google Scholar 

  • Bona, F., A. Doretto, E. Falasco, V. La Morgia, E. Piano, R. Ajassa & S. Fenoglio, 2016. Increased sediment loads in alpine streams: an integrated field study. River Research and Applications 32(6): 1316–1326.

    Article  Google Scholar 

  • Buendia, C., C. N. Gibbins, D. Vericat, R. J. Batalla & A. Douglas, 2013. Detecting the structural and functional impacts of fine sediment on stream invertebrates. Ecological Indicators 25: 184–196.

    Article  Google Scholar 

  • Buffagni, A. & S. Erba, 2007. Macroinvertebrati acquatici e direttiva 2000/60/EC (WFD)—Parte A. Metodo di campionamento per i fiumi guadabili. [Aquatic macroinvertebrates and 2000/60/EC Directive (WFD)—Part A. Sampling method for unwadable rivers]. IRSA-CNR Notiziario dei metodi analitici 1: 2–27.

    Google Scholar 

  • Camargo, J. A., 1992. Temporal and spatial variations in dominance, diversity and biotic indices along a limestone stream receiving a trout farm effluent. Water Air Soil Pollution 63: 343–359.

    Article  CAS  Google Scholar 

  • Carvalho, J. C., P. Cardoso, P. A. Borges, D. Schmera & J. Podani, 2013. Measuring fractions of beta diversity and their relationships to nestedness: a theoretical and empirical comparison of novel approaches. Oikos 122(6): 825–834.

    Article  Google Scholar 

  • Chiu, M. C., C. H. Yeh, Y. H. Sun & M. H. Kuo, 2013. Short-term effects of dam removal on macroinvertebrates in a Taiwan stream. Aquatic Ecology 47(2): 245–252.

    Article  Google Scholar 

  • Christensen, B., 1984. Asexual propagation and reproductive strategies in aquatic Oligochaeta. Hydrobiologia 115(1): 91–95.

    Article  Google Scholar 

  • Conroy, E., J. N. Turner, A. Rymszewicz, M. Bruen, J. J. O’Sullivan, D. M. Lawler & M. Kelly-Quinn, 2016. Evaluating the relationship between biotic and sediment metrics using mesocosms and field studies. Science of the Total Environment 568: 1092–1101.

    Article  CAS  PubMed  Google Scholar 

  • Cover, M. R., J. A. D. L. Fuente & V. H. Resh, 2010. Catastrophic disturbances in headwater streams: the long-term ecological effects of debris flows and debris floods in the Klamath Mountains, northern California. Canadian Journal of Fisheries and Aquatic Sciences 67(10): 1596–1610.

    Article  Google Scholar 

  • Crosa, G., E. Castelli, G. Gentili & P. Espa, 2010. Effects of suspended sediments from reservoir flushing on fish and macroinvertebrates in an Alpine stream. Aquatic Sciences 72: 85–95.

    Article  CAS  Google Scholar 

  • Descloux, S., T. Datry & P. Marmonier, 2013. Benthic and hyporheic invertebrate assemblages along a gradient of increasing streambed colmation by fine sediment. Aquatic Sciences 75(4): 493–507.

    Article  Google Scholar 

  • Doretto, A., F. Bona, E. Falasco, E. Piano, P. Tizzani & S. Fenoglio, 2016. Fine sedimentation affects CPOM availability and shredder abundance in Alpine streams. Journal of Freshwater Ecology 31(2): 299–302.

    Article  CAS  Google Scholar 

  • Doretto, A., E. Piano, F. Bona & S. Fenoglio, 2018. How to assess the impact of fine sediments on the macroinvertebrate communities of alpine streams? A selection of the best metrics. Ecological Indicators 84: 60–69.

    Article  Google Scholar 

  • Doretto, A., T. Bo, F. Bona, M. Apostolo, D. Bonetto & S. Fenoglio, 2019. Effectiveness of artificial floods for benthic community recovery after sediment flushing from a dam. Environmental Monitoring and Assessment 191(2): 88.

    Article  PubMed  Google Scholar 

  • Doretto, A., E. Piano, S. Fenoglio, F. Bona, G. Crosa, P. Espa & S. Quadroni, 2021. Beta-diversity and stressor specific index reveal patterns of macroinvertebrate community response to sediment flushing. Ecological Indicators 122: 107256.

    Article  Google Scholar 

  • Duan, X., Z. Wang, M. Xu & K. Zhang, 2009. Effect of streambed sediment on benthic ecology. International Journal of Sediment Research 24: 325–338.

    Article  Google Scholar 

  • Espa, P., E. Castelli, G. Crosa & G. Gentili, 2013. Environmental effects of storage preservation practices: controlled flushing of fine sediment from a small hydropower reservoir. Environmental Management 52(1): 261–276.

    Article  PubMed  Google Scholar 

  • Espa, P., M. L. Brignoli, G. Crosa, G. Gentili & S. Quadroni, 2016. Controlled sediment flushing at the Cancano Reservoir (Italian Alps): management of the operation and downstream environmental impact. Journal of Environmental Management 182: 1–12.

    Article  PubMed  Google Scholar 

  • Espa, P., R. J. Batalla, M. L. Brignoli, G. Crosa, G. Gentili & S. Quadroni, 2019. Tackling reservoir siltation by controlled sediment flushing: impact on downstream fauna and related management issues. PLoS ONE 14(6): e0218822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Füreder, L., C. Welter & J. K. Jackson, 2003. Dietary and stable isotope (d13C, d15N) analyses in alpine stream insects. International Review of Hydrobiology 88: 314–331.

    Article  Google Scholar 

  • Gabbud, C., C. T. Robinson & S. N. Lane, 2019. Summer is in winter: disturbance-driven shifts in macroinvertebrate communities following hydroelectric power exploitation. Science of the Total Environment 650: 2164–2180.

    Article  CAS  PubMed  Google Scholar 

  • Gariano, S. L. & F. Guzzetti, 2016. Landslides in a changing climate. Earth-Science Reviews 162: 227–252.

    Article  Google Scholar 

  • Gomi, T., S. Kobayashi, J. N. Negishi & F. Imaizumi, 2010. Short-term responses of macroinvertebrate drift following experimental sediment flushing in a Japanese headwater channel. Landscape and Ecological Engineering 6(2): 257–270.

    Article  Google Scholar 

  • Hansen, J. F. & D. B. Hayes, 2012. Long-term implications of dam removal for macroinvertebrate communities in Michigan and Wisconsin rivers, United States: macroinvertebrate response to dam removal. River Research and Applications 28(9): 1540–1550.

    Article  Google Scholar 

  • Harris, H. E., C. V. Baxter & J. M. Davis, 2018. Wildfire and debris flows affect prey subsidies with implications for riparian and riverine predators. Aquatic Sciences.

  • Harrison, E. T., Norris, R. H. & S. N. Wilkinson, 2007. The impact of fine sediment accumulation on benthic macroinvertebrates: implications for river management. In: Proceedings of the 5th Australian Stream Management Conference. Australian rivers: making a difference (pp. 139–144). Charles Sturt University: Thurgoona, New South Wales.

  • Hedrick, L. B., J. T. Anderson, S. A. Welsh & L. S. Lin, 2013. Sedimentation in mountain streams: a review of methods of measurement. Natural Resources 4: 92–104.

    Article  Google Scholar 

  • Hicks, B. J. & N. R. N. Watson, 1985. Seasonal changes in abundance of brown trout (Salmo trutta) and rainbow trout (S. gairdnerii) assessed by drift diving in the Rangitikei River, New Zealand. New Zealand Journal of Marine and Freshwater Research 19(1): 1–9.

    Article  Google Scholar 

  • Hillebrand, H., Blasius, B., Borer, E.T., Chase, J.M., Downing, J.A., Eriksson, B.K.,… & A.B. Ryabov, 2018. Biodiversity change is uncoupled from species richness trends: Consequences for conservation and monitoring. Journal of Applied Ecology 55(1): 169–184.

  • Jones, J. I., J. F. Murphy, A. L. Collins, D. A. Sear, P. S. Naden & P. D. Armitage, 2012. The impact of fine sediment on macroinvertebrates. River Research and Applications 28(8): 1055–1071.

    Article  Google Scholar 

  • Jowett, I. G., 1993. A method for objectively identifying pool, run, and riffle habitats from physical measurements. New Zealand journal of marine and freshwater research 27(2): 241–248.

    Article  Google Scholar 

  • Kaller, M. D. & K. J. Hartman, 2004. Evidence of a threshold level of fine sediment accumulation for altering benthic macroinvertebrate communities. Hydrobiologia 518(1–3): 95–104.

    Article  Google Scholar 

  • Kaufmann, P. R., D. P. Larsen & J. M. Faustini, 2009. Bed stability and sedimentation associated with human disturbances in Pacific Northwest streams. Journal of the American Water Resources Association 45: 434–459.

    Article  Google Scholar 

  • Kemp, J. L., D. M. Harper & G. Crosa, 2000. The habitat-scale ecohydraulics of rivers. Ecological Engineering 16(1): 17–29.

    Article  Google Scholar 

  • Lamberti, G. A., S. V. Gregory, L. R. Ashkenas, R. C. Wildman & K. M. Moore, 1991. Stream ecosystem recovery following a catastrophic debris flow. Canadian Journal of Fisheries and Aquatic Sciences 48(2): 196–208.

    Article  Google Scholar 

  • Larsen, S. & S. J. Ormerod, 2010. Low-level effects of inert sediments on temperate stream invertebrates. Freshwater Biology 55(2): 476–486.

    Article  Google Scholar 

  • Larsen, S., I. P. Vaughan & S. J. Ormerod, 2009. Scale dependent effects of fine sediments on temperate headwater invertebrates. Freshwater Biology 54(1): 203–219.

    Article  CAS  Google Scholar 

  • Larsen, S., G. Pace & S. J. Ormerod, 2010. Experimental effects of sediment deposition on the structure and function of macroinvertebrate assemblages in temperate streams. River Research and Applications 27(2): 257–267.

    Article  Google Scholar 

  • Lenat, D. R., D. L. Penrose & K. W. Eagleson, 1981. Variable effects of sediment addition on stream benthos. Hydrobiologia 79(2): 187–194.

    Article  Google Scholar 

  • Luce, J. J., M. F. Lapointe, A. G. Roy & D. B. Ketterling, 2013. The effects of sand abrasion of a predominantly stable stream bed on periphyton biomass losses. Ecohydrology 6(4): 689–699.

    Article  Google Scholar 

  • Matthaei, C. D., U. Uehlinger, E. I. Meyer & A. Frutiger, 1996. Recolonization by benthic invertebrates after experimental disturbance in a Swiss prealpine river. Freshwater Biology 35: 233–248.

    Article  Google Scholar 

  • McNeil, W. F. & W. H. Ahnell, 1964. Success of Pink Salmon Spawning Relative to Size of Spawning Bed Materials. US Fish and Wildlife Service Special Scientific Report Fisheries 469, Washington DC.

  • Mellado-Díaz, A., J. R. Sánchez-González, S. Guareschi, F. Magdaleno & M. T. Velasco, 2019. Exploring longitudinal trends and recovery gradients in macroinvertebrate communities and biomonitoring tools along regulated rivers. Science of the Total Environment 695: 133774.

    Article  CAS  PubMed  Google Scholar 

  • Milliman, J. D. & J. P. Syvitski, 1992. Geomorphic/tectonic control of sediment discharge to the ocean: the importance of small mountainous rivers. The Journal of Geology 100(5): 525–544.

    Article  Google Scholar 

  • Milliman, J. D., T. Y. Lee, J. C. Huang & S. J. Kao, 2017. Impact of catastrophic events on small mountainous rivers: temporal and spatial variations in suspended-and dissolved-solid fluxes along the Choshui River, central western Taiwan, during typhoon Mindulle, July 2–6, 2004. Geochimica et Cosmochimica Acta 205: 272–294.

    Article  CAS  Google Scholar 

  • Miserendino, M. L., M. Archangelsky, C. Brand & L. B. Epele, 2012. Environmental changes and macroinvertebrate responses in Patagonian streams (Argentina) to ashfall from the Chaitén Volcano (May 2008). Science of The Total Environment 424: 202–212.

    Article  CAS  PubMed  Google Scholar 

  • Moog, O. (ed.), 1995. Fauna aquatica austriaca: a comprehensive species inventory of Austrian aquatic organisms with ecological notes. Federal Ministry for Agriculture and Forestry, Vienna.

    Google Scholar 

  • Nogaro, G., F. Mermillod-Blondin, F. François-Carcaillet, J. P. Gaudet, M. Lafont & J. Gibert, 2006. Invertebrate bioturbation can reduce the clogging of sediment: an experimental study using infiltration sediment columns. Freshwater Biology 51(8): 1458–1473.

    Article  Google Scholar 

  • Nukazawa, K., S. Kajiwara, T. Saito & Y. Suzuki, 2020. Preliminary assessment of the impacts of sediment sluicing events on stream insects in the Mimi River, Japan. Ecological Engineering 145: 105726.

    Article  Google Scholar 

  • Peck, D. V., Herlihy, A. T., Hill, B. H., Hughes, R. M., Kaufmann, P. R., Klemm, D. J., … M. R. Cappaert, 2006. Environmental Monitoring and Assessment Program-Surface Waters Western Pilot Study field operations manual for wadeable streams: EPA Report EPA/620/R-06/003, U.S. Environmental Protection Agency, Office of Research and Development, Washington, DC.

  • Quadroni, S., M. L. Brignoli, G. Crosa, G. Gentili, F. Salmaso, S. Zaccara & P. Espa, 2016. Effects of sediment flushing from a small Alpine reservoir on downstream aquatic fauna. Ecohydrology 9(7): 1276–1288.

    Article  Google Scholar 

  • Quadroni, S., G. Crosa, G. Gentili & P. Espa, 2017. Response of stream benthic macroinvertebrates to current water management in Alpine catchments massively developed for hydropower. Science of The Total Environment 609: 484–496.

    Article  CAS  PubMed  Google Scholar 

  • Rabenì, C. F., K. E. Doisy & L. D. Zweig, 2005. Stream invertebrate community functional responses to deposited sediment. Aquatic Sciences 67: 395–402.

    Article  Google Scholar 

  • Renard, K. G., 1997. Predicting soil erosion by water: a guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). United States Government Printing.

  • Rinaldi, M., Belletti, B., Comiti, F., Nardi, L., Mao, L. & M. Bussettini, 2016 The Geomorphic Unit survey and classification System (GUS)—Sistema di rilevamento e classificazione delle Unità Morfologiche dei corsi d’acqua (SUM). Versione aggiornata 2016. ISPRA—Manuali e Linee Guida 132/2016. Roma.

  • Salmaso, F., G. Crosa, P. Espa, G. Gentili & S. Quadroni, 2020. The year after an extraordinary sedimentation event in a regulated Alpine river: the impact on benthic macroinvertebrate communities. River Research and Applications 36(8): 1656–1667.

    Article  Google Scholar 

  • Salmaso, F., G. Crosa, P. Espa, G. Gentili, S. Quadroni & S. Zaccara, 2018. Benthic macroinvertebrates response to water management in a lowland river: effects of hydro-power vs irrigation off-stream diversions. Environmental Monitoring and Assessment 190(1): 33.

    Article  CAS  Google Scholar 

  • Sarriquet, P. E., P. Bordenave & P. Marmonier, 2007. Effects of bottom sediment restoration on interstitial habitat characteristics and benthic macroinvertebrate assemblages in a headwater stream. River Research and Applications 23(8): 815–828.

    Article  Google Scholar 

  • Schmidt-Kloiber, A. & D. Hering, 2015. www.freshwaterecology.info - an online tool that unifies, standardises and codifies more than 20,000 European freshwater organisms and their ecological preferences. Ecological Indicators 53: 271–282.

    Article  Google Scholar 

  • Silva, D. R., R. Ligeiro, R. M. Hughes & M. Callisto, 2014. Visually determined stream mesohabitats influence benthic macroinvertebrate assessments in headwater streams. Environmental Monitoring and Assessment 186(9): 5479–5488.

    Article  CAS  PubMed  Google Scholar 

  • Steel, A. E., R. A. Peek, R. A. Lusardi & S. M. Yarnell, 2018. Associating metrics of hydrologic variability with benthic macroinvertebrate communities in regulated and unregulated snowmelt-dominated rivers. Freshwater Biology 63(8): 844–858.

    Article  Google Scholar 

  • Thomson, J. R., D. D. Hart, D. F. Charles, T. L. Nightengale & D. M. Winter, 2005. Effects of removal of a small dam on downstream macroinvertebrate and algal assemblages in a Pennsylvania stream. Journal of North American Benthological Society 24: 192–207.

    Article  Google Scholar 

  • Tullos, D. D., D. S. Finn & C. Walter, 2014. Geomorphic and ecological disturbance and recovery from two small dams and their removal. PLoS ONE 9(9): e108091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verdonschot, P. F., 2007. Spatial and temporal re-distribution of Naididae (tubificoid naidids and naidids s. str., Annelida, Clitellata) in Europe due to climate change: a review based on observational data. Acta Hydrobiologica Sinica 31: 116–138.

    Google Scholar 

  • Vericat, D., F. Ville, A. Palau-Ibars & R. J. Batalla, 2020. Effects of hydropeaking on bed mobility: evidence from a Pyrenean River. Water 12(1): 178.

    Article  Google Scholar 

  • Wilkes, M. A., M. Mckenzie, J. F. Murphy & R. P. Chadd, 2017. Assessing the mechanistic basis for fine sediment biomonitoring: inconsistencies among the literature, traits and indices. River Research and Applications 33(10): 1618–1629.

    Article  Google Scholar 

  • Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmental Management 21(2): 203–217.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., X. Zhou, Y. Yi, M. Xu & Z. Yang, 2018. Influence of debris flows on macroinvertebrate diversity and assemblage structure. Ecological Indicators 85: 781–790.

    Article  Google Scholar 

  • Yule, C. M., L. Boyero & R. Marchant, 2010. Effects of sediment pollution on food webs in a tropical river (Borneo, Indonesia). Marine and Freshwater Research 61(2): 204–213.

    Article  CAS  Google Scholar 

  • Zhang, Y., B. Malmqvist & G. Englund, 1998. Ecological processes affecting community structure of blackfly larvae in regulated and unregulated rivers: a regional study. Journal of Applied Ecology 35(5): 673–686.

    Article  Google Scholar 

  • Zweig, L. D. & C. F. Rabenì, 2001. Biomonitoring for deposited sediment using benthic invertebrates: a test on 4 Missouri streams. Journal of the North American Benthological Society 20(4): 643–657.

    Article  Google Scholar 

Download references

Acknowledgments

We thank University of Insubria for funding two post-doc projects (SQ and FS). We also thank Dr Livia Servanzi, Dr Luca Bonomi and Dr Riccardo Antognazza for helping in the field work. We finally thank the anonymous reviewers who supported the improvement of a first draft of this paper by providing detailed and constructive suggestions.

Funding

University of Insubria funded two post-doc projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francesca Salmaso.

Ethics declarations

Conflicts of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Informed consent

All authors consent to the publication of the manuscript in Hydrobiologia, should the article be accepted.

Additional information

Handling editor: María del Mar Sánchez-Montoya

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salmaso, F., Espa, P., Crosa, G. et al. Impacts of fine sediment input on river macroinvertebrates: the role of the abiotic characteristics at mesohabitat scale. Hydrobiologia 848, 4189–4209 (2021). https://doi.org/10.1007/s10750-021-04632-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-021-04632-8

Keywords

Navigation