Skip to main content
Log in

The Gbar project, or how does antimatter fall?

  • Published:
Hyperfine Interactions Aims and scope Submit manuscript

Abstract

The Einstein classical Weak Equivalence Principle states that the trajectory of a particle is independent of its composition and internal structure when it is only submitted to gravitational forces. This fundamental principle has never been directly tested with antimatter. However, theoretical models such as supergravity may contain components inducing repulsive gravity, thus violating this principle. The GBAR project (Gravitational Behaviour of Antihydrogen at Rest) proposes to measure the free fall acceleration of ultracold neutral antihydrogen atoms in the terrestrial gravitational field. The experiment consists in preparing antihydrogen ions (one antiproton and two positrons) and sympathetically cool them with Be+ ions to a few 10 μ K. The ultracold ions will then be photoionized just above threshold, and the free-fall time over a known distance measured. In this work, the GBAR project is described as well as possible improvements that use quantum reflection of antihydrogen on surfaces to use quantum methods of measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Scherk, J.: Phys. Lett. B 88, 265 (1979). http://www.sciencedirect.com/science/article/B6TVN-46YKS47-2RB/2/014fc5233267c60b9065828f66c4ccce

    Article  MathSciNet  ADS  Google Scholar 

  2. Nieto, M.M., Goldman, T.: Phys. Rep. 205, 221 (1991). http://www.sciencedirect.com/science/article/B6TVP-46TY5BT-22/2/8354635bd464ffaea9ab3d82b6dd7820

    Article  ADS  Google Scholar 

  3. Karshenboim, S.G.: Astron. Lett. 35, 663 (2009). doi:10.1134/S1063773709100028

    Article  ADS  Google Scholar 

  4. Kostelecký, V.A., Tasson, J.D.: Phys. Rev. D 83, 016013 (2011). http://link.aps.org/doi/10.1103/PhysRevD.83.016013

    Article  ADS  Google Scholar 

  5. Villata, M.: EPL (Europhys. Lett.) 94, 20001 (2011). http://stacks.iop.org/0295-5075/94/i=2/a=20001

    Article  ADS  Google Scholar 

  6. Benoit-Lévy, A., Chardin, G.: Astron. Astrophys. 537(1), A78 (2012). doi:10.1051/0004-6361/201016103

    Article  ADS  Google Scholar 

  7. Cabbolet, M.T.F.: Astrophys. Space Sci. 337, 5 (2012). doi:10.1007/s10509-011-0939-8

    Article  ADS  Google Scholar 

  8. Villata, M.: Astrophys. Space Sci. 337, 15 (2012). doi:10.1007/s10509-011-0940-2

    Article  ADS  Google Scholar 

  9. Hughes, R.J., Holzscheiter, M.H.: Phys. Rev. Lett. 66, 854 (1991). http://link.aps.org/doi/10.1103/PhysRevLett.66.854

    Article  ADS  Google Scholar 

  10. Gabrielse, G., Khabbaz, A., Hall, D.S., Heimann, C., Kalinowsky, H., Jhe, W.: Phys. Rev. Lett. 82, 3198 (1999). http://link.aps.org/doi/10.1103/PhysRevLett.82.3198

    Article  ADS  Google Scholar 

  11. Apostolakis, A., Aslanides, E., Backenstoss, G., Bargassa, P., Behnke, O., Benelli, A., Bertin, V., Blanc, F., Bloch, P., Carlson, P., Carroll, M., Cawley, E., Chardin, G., Chertok, M.B., Danielsson, M., Dejardin, M., Derre, J., Ealet, A., Eleftheriadis, C., Faravel, W., Fetscher, L., Fidecaro, M., Filipčič, A., Francis, D., Fry, J., Gabathuler, E., Gamet, R., Gerber, H.J., Go, A., Haselden, A., Hayman, P.J., Henry-Couannier, F., Hollander, R.W., Jon-And, K., Kettle, P.R., Kokkas, P., Kreuger, R., Le Gac, R., Leimgruber, F., Mandić, I., Manthos, N., Marel, G., Mikuž, M., Miller, J., Montanet, F., Muller, A., Nakada, T., Pagels, B., Papadopoulos, I., Pavlopoulos, P., Polivka, G., Rickenbach, R., Roberts, B.L., Ruf, T., Sakeliou, L., Schäfer, M., Schaller, L.A., Schietinger, T., Schopper, A., Tauscher, L., Thibault, C., Touchard, F., Touramanis, C., Van Eijk, C.W.E., Vlachos, S., Weber, P., Wigger, O., Wolter, M., Zavrtanik, D., Zimmerman, D., Ellis, J., Mavromatos, N.E., Nanopoulos, D.V.: Phys. Lett. B 452, 425 (1999). http://www.sciencedirect.com/science/article/pii/S0370269399002713

    Article  ADS  Google Scholar 

  12. Adelberger, E.G., Heckel, B.R., Stubbs, C.W., Su, Y.: Phys. Rev. Lett. 66, 850 (1991). http://prl.aps.org/abstract/PRL/v66/i7/p850_1

    Article  ADS  Google Scholar 

  13. Goldman, T., Nieto, M.M., Holzscheiter, M.H., Darling, T.W., Schauer, M., Schecker, J.: Phys. Rev. Lett. 67, 1048 (1991). http://link.aps.org/doi/10.1103/PhysRevLett.67.1048

    Article  ADS  Google Scholar 

  14. Holzscheiter, M.H., Brown, R.E., Camp, J.B., Cornford, S., Darling, T., Dyer, P., Goldman, T., Høibråten, S., Hosea, K., Hughes, R.J., Jarmie, N., Kenefick, R.A., King, N.S.P., Lizon, D.C., Nieto, M.M., Midzor, M.M., Parry, S.P., Rochet, J., Ristinen, R.A., Schauer, M.M., Schecker, J.A., Witteborn, F.C.: Nucl. Phys. A 558, 709 (1993). http://www.sciencedirect.com/science/article/pii/037594749390432W

    Article  ADS  Google Scholar 

  15. Drobychev, G.Y., Nédélec, P., Sillou, D., Gribakin, G., Walters, H., Ferrari, G., Prevedelli, M., Tino, G.M., Doser, M., Canali, C., Carraro, C., Lagomarsino, V., Manuzio, G., Testera, G., Zavatarelli, S., Amoretti, M., Kellerbauer, A.G., Meier, J., Warring, U., Oberthaler, M.K., Boscolo, I., Castelli, F., Cialdi, S., Formaro, L., Gervasini, A., Giammarchi, G., Vairo, A., Consolati, G., Dupasquier, A., Quasso, F., Stroke, H.H., Belov, A.S., Gninenko, S.N., Matveev, V.A., Byakov, V.M., Stepanov, S.V., Zvezhinskij, D.S., De Combarieu, M., Forget, P., Pari, P., Cabaret, L., Comparat, D., Bonomi, G., Rotondi, A., Djourelov, N., Jacquey, M., Büchner, M., Trénec, G., Vigué, J., Brusa, R.S., Mariazzi, S., Hogan, S., Merkt, F., Badertscher, A., Crivelli, P., Gendotti, U., Rubbia, A.: Proposal for the AEGIS experiment at the CERN antiproton decelerator (Antimatter Experiment: Gravity, Interferometry, Spectroscopy), Tech. Rep. SPSC-P-334. CERN-SPSC-2007-017. CERN, Geneva (2007). http://cds.cern.ch/record/1037532?ln=fr

    Google Scholar 

  16. Chardin, G., Grandemange, P., Lunney, D., Manea, V., Badertscher, A., Crivelli, P., Curioni, A., Marchionni, A., Rossi, B., Rubbia, A., Nesvizhevsky, V., Hervieux, P.-A., Manfredi, G., Comini, P., Debu, P., Dupré, P., Liszkay, L., Mansoulié, B., Pérez, P., Rey, J.-M., Ruiz, N., Sacquin, Y., Voronin, A., Biraben, F., Cladé, P., Douillet, A., Gérardin, A., Guellati, S., Hilico, L., Indelicato, P., Lambrecht, A., Guérout, R., Karr, J.-P., Nez, F., Reynaud, S., Tran, V.-Q., Mohri, A., Yamazaki, Y., Charlton, M., Eriksson, S., Madsen, N., van der Werf, D.-P., Kuroda, N., Torii, H., Nagashima, Y.: Proposal to measure the Gravitational Behaviour of Antihydrogen at Rest, Tech. Rep. CERN-SPSC-2011-029. SPSC-P-342. CERN, Geneva (2011). http://cds.cern.ch/record/1386684?ln=en

    Google Scholar 

  17. Alpha Collaboration, Charman, A.E.: Nat. Commun. 4, 1785 (2013). doi:10.1038/ncomms2787

    Article  Google Scholar 

  18. Walz, J., Hänsch, T.W.: Gen. Relativ. Gravit. 36, 561 (2004). doi:10.1023/B:GERG.0000.010730.93408.87

    Article  MATH  ADS  Google Scholar 

  19. Tranquille, G., Belochitskii, P., Eriksson, T., Maury, S., Oelert, W.: Conf. Proc. C1205201, THPPP017. 3 (2012)

    Google Scholar 

  20. Herfurth, F., Dilling, J., Kellerbauer, A., Bollen, G., Henry, S., Kluge, H.J., Lamour, E., Lunney, D., Moore, R.B., Scheidenberger, C., Schwarz, S., Sikler, G., Szerypo, J.: Nucl. Instr. Methods A 469, 254 (2001). http://www.sciencedirect.com/science/article/B6TJM-43PGJKX-D/2/d5a71a85b9a62763e751fb5a1fcb3716

    Article  ADS  Google Scholar 

  21. Lunney, D., Bachelet, C., Guénaut, C., Henry, S., Sewtz, M.: Nucl. Instr. Methods A 598, 379 (2009). http://www.sciencedirect.com/science/article/pii/S0168900208014459

    Article  ADS  Google Scholar 

  22. Oshima, N., Kojima, T.M., Niigaki, M., Mohri, A., Komaki, K., Yamazaki, Y.: Phys. Rev. Lett. 93, 195001 (2004). http://link.aps.org/doi/10.1103/PhysRevLett.93.195001

    Article  ADS  Google Scholar 

  23. Liszkay, L., Corbel, C., Perez, P., Desgardin, P., Barthe, M.-F., Ohdaira, T., Suzuki, R., Crivelli, P., Gendotti, U., Rubbia, A., Etienne, M., Walcarius, A.: Appl. Phys. Lett. 92, 063114 (2008). doi:10.1063/1.2844888. http://link.aip.org/link/?APL/92/063114/1

    Article  ADS  Google Scholar 

  24. Cassidy, D.B., Crivelli, P., Hisakado, T.H., Liszkay, L., Meligne, V.E., Perez, P., Tom, H.W.K., Mills, A.P.: Phys. Rev. A 81, 012715 (2010). http://link.aps.org/doi/10.1103/PhysRevA.81.012715

    Article  ADS  Google Scholar 

  25. Crivelli, P., Gendotti, U., Rubbia, A., Liszkay, L., Perez, P., Corbel, C.: Phys. Rev. A 81, 052703 (2010). http://link.aps.org/doi/10.1103/PhysRevA.81.052703

    Article  ADS  Google Scholar 

  26. Comini, P., Hervieux, P.-A., Biraben, F.: These proceedings, Hyperfine Interaction. doi:10.1007/s10751-014-1030-y

  27. Ball, H., Lee, M.W., Gensemer, S.D., Biercuk, M.J.: Rev. Sci. Instrum. 84, 063107 (2013). doi:10.1063/1.4811093

    Article  ADS  Google Scholar 

  28. Lo, H.-Y., Alonso, J., Kienzler, D., Keitch, B.C., Clercq, L.E., Negnevitsky, V., Home, J.P.: Appl. Phys. B, 1 (2013). doi:10.1007/s00340-013-5605-0

    Google Scholar 

  29. Vasilyev, S., Nevsky, A., Ernsting, I., Hansen, M., Shen, J., Schiller, S.: Appl. Phys. B Lasers Opt. 103, 27 (2011). doi:10.1007/s00340-011-4435-1

    Article  ADS  Google Scholar 

  30. Wilson, A.C., Ospelkaus, C., VanDevender, A.P., Mlynek, J.A., Brown, K.R., Leibfried, D., Wineland, D.J.: Appl. Phys. B 105, 741 (2011). doi:10.1007/s00340-011-4771-1

    Article  ADS  Google Scholar 

  31. Larson, D.J., Bergquist, J.C., Bollinger, J.J., Itano, W.M., Wineland, D.J.: Phys. Rev. Lett. 57, 70 (1986). http://link.aps.org/doi/10.1103/PhysRevLett.57.70

    Article  ADS  Google Scholar 

  32. Barrett, M.D., DeMarco, B., Schaetz, T., Meyer, V., Leibfried, D., Britton, J., Chiaverini, J., Itano, W.M., Jelenkovicacute, B., Jost, J.D., Langer, C., Rosenband, T., Wineland, D.J.: Phys. Rev. A 68, 042302 (2003). http://link.aps.org/doi/10.1103/PhysRevA.68.042302

    Article  ADS  Google Scholar 

  33. Heinzen, D.J., Wineland, D.J.: Phys. Rev. A 42, 2977 (1990). http://link.aps.org/doi/10.1103/PhysRevA.42.2977

    Article  ADS  Google Scholar 

  34. Monroe, C., Meekhof, D.M., King, B.E., Jefferts, S.R., Itano, W.M., Wineland, D.J., Gould, P.: Phys. Rev. Lett. 75, 4011 (1995). http://link.aps.org/doi/10.1103/PhysRevLett.75.4011

    Article  ADS  Google Scholar 

  35. Bussmann, M., Schramm, U., Habs, D., Kolhinen, V.S., Szerypo, J.: Int. J. Mass Spectrom. 251, 179 (2006). http://www.sciencedirect.com/science/article/B6VND-4JGJGXH-1/2/c3e1265f6ef86a3c9bfa07c0eab0d64e

    Article  ADS  Google Scholar 

  36. Eble, J.F., Ulm, S., Zahariev, P., Schmidt-Kaler, F., Singer, K.: J. Opt. Soc. Am. B 27, A99 (2010). http://josab.osa.org/abstract.cfm?URI=josab-27-6-A99

    Article  Google Scholar 

  37. Huber, G., Ziesel, F., Poschinger, U., Singer, K., Schmidt-Kaler, F.: Appl. Phys. B 100, 725 (2010). doi:10.1007/s00340-010-4148-x

    Article  ADS  Google Scholar 

  38. Walther, A., Ziesel, F., Ruster, T., Dawkins, S.T., Ott, K., Hettrich, M., Singer, K., Schmidt-Kaler, F., Poschinger, U.: Phys. Rev. Lett. 109, 080501 (2012). http://link.aps.org/doi/10.1103/PhysRevLett.109.080501

    Article  ADS  Google Scholar 

  39. Shimizu, F.: Phys. Rev. Lett. 86, 987 (2001). http://link.aps.org/doi/10.1103/PhysRevLett.86.987

    Article  ADS  Google Scholar 

  40. Dufour, G., Gérardin, A., Guérout, R., Lambrecht, A., Nesvizhevsky, V.V., Reynaud, S., Voronin, A.Y.: Phys. Rev. A 87, 012901 (2013). http://link.aps.org/doi/10.1103/PhysRevA.87.012901

    Article  ADS  Google Scholar 

  41. Nesvizhevsky, V.V., Borner, H.G., Petukhov, A.K., Abele, H., Baeszler, S., Ruesz, F.J., Stoferle, T., Westphal, A., Gagarski, A.M., Petrov, G.A., Strelkov, A.V.: Nature 415, 297 (2002). doi:10.1038/415297a

    Article  ADS  Google Scholar 

  42. Nesvizhevsky, V.V., Voronin, A.Y., Cubitt, R., Protasov, K.V.: Nat. Phys. 6, 114 (2010). doi:10.1038/nphys1478

    Article  Google Scholar 

  43. Voronin, A.Y., Nesvizhevsky, V.V., Reynaud, S.: Phys. Rev. A 85, 014902 (2012). http://link.aps.org/doi/10.1103/PhysRevA.85.014902

    Article  ADS  Google Scholar 

  44. Voronin, A.Y., Nesvizhevsky, V.V., Reynaud, S.: J. Phys. B: At. Mol. Opt. Phys. 45, 165007 (2012). http://stacks.iop.org/0953-4075/45/i=16/a=165007

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Indelicato.

Additional information

Proceedings of the 11th International Conference on Low Energy Antiproton Physics (LEAP 2013) held in Uppsala, Sweden, 10–15 June, 2013

Rights and permissions

Reprints and permissions

About this article

Cite this article

Indelicato, P., Chardin, G., Grandemange, P. et al. The Gbar project, or how does antimatter fall?. Hyperfine Interact 228, 141–150 (2014). https://doi.org/10.1007/s10751-014-1019-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10751-014-1019-6

Keywords

Navigation