Skip to main content

Advertisement

Log in

MicroRNA-92a Drives Th1 Responses in the Experimental Autoimmune Encephalomyelitis

  • ORIGINAL ARTICLE
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Dysregulation of microRNAs (miRNAs) has been linked to the progress of a number of autoimmune diseases including multiple sclerosis (MS), and its animal model, experimental autoimmune encephalomyelitis (EAE). IFN-γ-producing Th1 cells are major players in MS/EAE pathogenesis. It is known that differentiation of T cells towards the Th1 phenotype is influenced by various factors including miRNAs. The miR-92a shows substantial upregulation in MS; however, little is known about its role in the development of autoimmune and inflammatory responses. Herein, we investigated the role of miR-92a in the pathogenesis of MS, focusing on its potential effects on differentiation of Th1 cells. The expression levels of miR-92a were assessed in the spinal cord tissues and splenocytes from mice with EAE using real-time RT-PCR. Next, using transfection with miR-92a mimic sequences, the potential involvement of miR-92a in Th1 polarization was investigated by flow cytometric analysis. Moreover, the expression levels of miR-92a targets were explored in spinal cord tissues of EAE mice. miR-92a expression was enhanced in mouse spinal cord samples at the peak of EAE disease. Overexpression of miR-92a in splenocytes led to increased differentiation of Th1 cells compared with cells transfected with negative control sequences. Enhanced miR-92a expression was accompanied by reduced expression TSC1 or DUSP10, predicted miR-92a targets, in EAE spinal cords. Our data point to a potential role for miR-92a in neuroinflammatory responses in EAE. Our results indicate that miR-92a might affect Th1 differentiation, likely due to downregulation of TSC1 and DUSP10

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Compston, A., and A. Coles. 2008. Multiple sclerosis. Lancet 372 (9648): 1502–1517.

    Article  CAS  PubMed  Google Scholar 

  2. Mix, E., H. Meyer-Rienecker, H.P. Hartung, and U.K. Zettl. 2010. Animal models of multiple sclerosis—potentials and limitations. Progress in Neurobiology 92 (3): 386–404.

    Article  PubMed  Google Scholar 

  3. Amedei, A., D. Prisco, and M.M. D’Elios. 2012. Multiple sclerosis: The role of cytokines in pathogenesis and in therapies. International Journal of Molecular Sciences 13 (10): 13438–13460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. McFarland, H.F., and R. Martin. 2007. Multiple sclerosis: A complicated picture of autoimmunity. Nature Immunology 8 (9): 913–919.

    Article  CAS  PubMed  Google Scholar 

  5. Felekkis, K., E. Touvana, Ch. Stefanou, and C. Deltas. 2010. microRNAs: A newly described class of encoded molecules that play a role in health and disease. Hippokratia 14 (4): 236–240.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Wu, T., A. Wieland, K. Araki, C.W. Davis, L. Ye, J.S. Hale, and R. Ahmed. 2012. Temporal expression of microRNA cluster miR-17-92 regulates effector and memory CD8+ T-cell differentiation. Proceedings of the National Academy of Sciences of the United States of America 109 (25): 9965–9970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Thamilarasan, M., D. Koczan, M. Hecker, B. Paap, and U.K. Zettl. 2012. MicroRNAs in multiple sclerosis and experimental autoimmune encephalomyelitis. Autoimmunity Reviews 11 (3): 174–179.

    Article  CAS  PubMed  Google Scholar 

  8. Jin, X.F., Wu N, L. Wang, and J. Li. 2013. Circulating microRNAs: A novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cellular and Molecular Neurobiology 33 (5): 601–613.

    Article  CAS  PubMed  Google Scholar 

  9. Wu, W., H. Xiao, A. Laguna-Fernandez, G. Villarreal Jr., K.C. Wang, G.G. Geary, Y. Zhang, et al. 2011. Flow-dependent regulation of Kruppel-like factor 2 is mediated by MicroRNA-92a. Circulation 124 (5): 633–641.

    Article  CAS  PubMed  Google Scholar 

  10. Xiao, C., L. Srinivasan, D.P. Calado, H.C. Patterson, B. Zhang, J. Wang, J.M. Henderson, J.L. Kutok, and K. Rajewsky. 2008. Lymphoproliferative disease and autoimmunity in mice with increased miR-17-92 expression in lymphocytes. Nature Immunology 9 (4): 405–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Kouchkovsky, D., J.H. Esensten, W.L. Rosenthal, M.M. Morar, J.A. Bluestone, and L.T. Jeker. 2013. microRNA-17-92 regulates IL-10 production by regulatory T cells and control of experimental autoimmune encephalomyelitis. Journal of Immunology 191 (4): 1594–1605.

    Article  CAS  Google Scholar 

  12. Noorbakhsh, F., K.K. Ellestad, F. Maingat, K.G. Warren, M.H. Han, L. Steinman, G.B. Baker, and C. Power. 2011. Impaired neurosteroid synthesis in multiple sclerosis. Brain 134 (Pt 9): 2703–2721.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Giuliani, F., L.M. Metz, T. Wilson, Y. Fan, A. Bar-Or, and V.W. Yong. 2005. Additive effect of the combination of glatiramer acetate and minocycline in a model of MS. Journal of Neuroimmunology 158 (1–2): 213–221.

    Article  CAS  PubMed  Google Scholar 

  14. Schellenberg, A.E., R. Buist, V.W. Yong, M.R. Del Bigio, and J. Peeling. 2007. Magnetic resonance imaging of blood-spinal cord barrier disruption in mice with experimental autoimmune encephalomyelitis. Magnetic Resonance in Medicine 58 (2): 298–305.

    Article  PubMed  Google Scholar 

  15. Miller, S.D., and W.J. Karpus. 2007. Experimental autoimmune encephalomyelitis in the mouse. In Current Protocols in Immunology

  16. Talebi, F., S. Ghorbani, R. WF Chan, F. Boghozian, S. Masoumi, M. Ghasemi, C. Power Vojgani, and F. Noorbakhsh. 2017. MicroRNA-142 regulates inflammation and T cell differentiation in an animal model of multiple sclerosis. Journal of Neuroinflammation 14 (1): 55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ghorbani, S., F. Talebi, W.F. Chan, F. Masoumi, M. Vojgani, C. Power, and F. Noorbakhsh. 2017. MicroRNA-181 variants regulate T cell phenotype in the context of autoimmune Neuroinflammation. Frontiers in Immunology 8: 758.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Constantinescu, C.S., N. Farooqi, K. O’Brien, and B. Gran. 2011. Experimental autoimmune encephalomyelitis (EAE) as a model for multiple sclerosis (MS). British Journal of Pharmacology 164 (4): 1079–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chou, C.H., S. Shrestha, C.D. Yang, N.W. Chang, Y.L. Lin, K.W. Liao, W.C. Huang, et al. 2018. miRTarBase update 2018: A resource for experimentally validated microRNA-target interactions. Nucleic Acids Research 46 (D1): D296–D302.

    Article  CAS  PubMed  Google Scholar 

  20. He, G., L. Zhang, Q. Li, and L. Yang. 2014. miR-92a/DUSP10/JNK signalling axis promotes human pancreatic cancer cells proliferation. Biomedicine & Pharmacotherapy 68 (1): 25–30.

    Article  CAS  Google Scholar 

  21. Park, Y., H.S. Jin, J. Lopez, C. Elly, G. Kim, M. Murai, M. Kronenberg, and Y.C. Liu. 2013. TSC1 regulates the balance between effector and regulatory T cells. Journal of Clinical Investigation 123 (12): 5165–5178.

    Article  CAS  PubMed  Google Scholar 

  22. Lang, R., M. Hammer, and J. Mages. 2006. DUSP meet immunology: Dual specificity MAPK phosphatases in control of the inflammatory response. Journal of Immunology 177 (11): 7497–7504.

    Article  CAS  Google Scholar 

  23. Wu, T., A. Wieland, J. Lee, J.S. Hale, J.H. Han, Xu X, and R. Ahmed. 2015. Cutting edge: miR-17-92 is required for both CD4 Th1 and T follicular helper cell responses during viral infection. Journal of Immunology 195 (6): 2515–2519.

    Article  CAS  Google Scholar 

  24. Jiang, S., C. Li, V. Olive, E. Lykken, F. Feng, J. Sevilla, Y. Wan, L. He, and Q.J. Li. 2011. Molecular dissection of the miR-17-92 cluster’s critical dual roles in promoting Th1 responses and preventing inducible Treg differentiation. Blood 118 (20): 5487–5497.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu, S.Q., S. Jiang, C. Li, B. Zhang, and Q.J. Li. 2014. miR-17-92 cluster targets phosphatase and tensin homology and Ikaros Family Zinc Finger 4 to promote TH17-mediated inflammation. Journal of Biological Chemistry 289 (18): 12446–12456.

    Article  CAS  PubMed  Google Scholar 

  26. Niu, H., K. Wang, A. Zhang, S. Yang, Z. Song, W. Wang, C. Qian, X. Li, Y. Zhu, and Y. Wang. 2012. miR-92a is a critical regulator of the apoptosis pathway in glioblastoma with inverse expression of BCL2L11. Oncology Reports 28 (5): 1771–1777.

    Article  CAS  PubMed  Google Scholar 

  27. Ren, C., W. Wang, C. Han, H. Chen, Fu D, Y. Luo, H. Yao, et al. 2016. Expression and prognostic value of miR-92a in patients with gastric cancer. Tumor Biology 37 (7): 9483–9491.

    Article  CAS  PubMed  Google Scholar 

  28. Nilsson, S., C. Möller, K. Jirström, A. Lee, S. Busch, R. Lamb, and G. Landberg. 2012. Downregulation of miR-92a is associated with aggressive breast cancer features and increased tumour macrophage infiltration. PLoS One 7 (4): e36051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhou, T., G. Zhang, Z. Liu, S. Xia, and H. Tian. 2013. Overexpression of miR-92a correlates with tumor metastasis and poor prognosis in patients with colorectal cancer. International Journal of Colorectal Disease 28 (1): 19–24.

    Article  CAS  PubMed  Google Scholar 

  30. Li, M., X. Guan, Y. Sun, J. Mi, X. Shu, F. Liu, and C. Li. 2014. miR-92a family and their target genes in tumorigenesis and metastasis. Experimental Cell Research 323 (1): 1–6.

    Article  CAS  PubMed  Google Scholar 

  31. Lv, X.B., X. Zhang, L. Deng, L. Jiang, W. Meng, Lu Z, and X. Wang. 2014. MiR-92a mediates AZD6244 induced apoptosis and G1-phase arrest of lymphoma cells by targeting Bim. Cell Biology International 38 (4): 435–443.

    Article  CAS  PubMed  Google Scholar 

  32. Ahmadi, S., M. Sharifi, and R. Salehi. 2016. Locked nucleic acid inhibits miR-92a-3p in human colorectal cancer, induces apoptosis and inhibits cell proliferation. Cancer Gene Therapy 23 (7): 199–205.

    Article  CAS  PubMed  Google Scholar 

  33. Carlsen, A.L., A.J. Schetter, C.T. Nielsen, C. Lood, S. Knudsen, A. Voss, C.C. Harris, et al. 2013. Circulating microRNA expression profiles associated with systemic lupus erythematosus. Arthritis & Rheumatology 65 (5):1324–1334.

  34. Kim, B.S., J.Y. Jung, J.Y. Jeon, H.A. Kim, and C.H. Suh. 2016. Circulating hsa-miR-30e-5p, hsa-miR-92a-3p, and hsa-miR-223-3p may be novel biomarkers in systemic lupus erythematosus. HLA 88 (4): 187–193.

    Article  CAS  PubMed  Google Scholar 

  35. Sing, T., M. Jinnin, K. Yamane, N. Honda, K. Makino, I. Kajihara, T. Makino, K. Sakai, S. Masuguchi, S. Fukushima, and H. Ihn. 2012. microRNA-92a expression in the sera and dermal fibroblasts increases in patients with scleroderma. Rheumatology (Oxford) 51 (9): 1550–1556.

    Article  CAS  Google Scholar 

  36. Chen, Z., L. Wen, M. Martin, C.Y. Hsu, L. Fang, F.M. Lin, T.Y. Lin, et al. 2015. Oxidative stress activates endothelial innate immunity via sterol regulatory element binding protein 2 (SREBP2) transactivation of microRNA-92a. Circulation 131 (9): 805–814.

    Article  CAS  PubMed  Google Scholar 

  37. Loyer, X., S. Potteaux, A.C. Vion, C.L. Guérin, S. Boulkroun, P.E. Rautou, B. Ramkhelawon, et al. 2014. Inhibition of microRNA-92a prevents endothelial dysfunction and atherosclerosis in mice. Circulation Research 114 (3): 434–443.

    Article  CAS  PubMed  Google Scholar 

  38. Manning, B.D., and L.C. Cantley. 2003. Rheb fills a GAP between TSC and TOR. Trends in Biochemical Sciences 28 (11): 573–576.

    Article  CAS  PubMed  Google Scholar 

  39. Delgoffe, G.M., K.N. Pollizzi, A.T. Waickman, E. Heikamp, D.J. Meyers, M.R. Horton, B. Xiao, P.F. Worley, and J.D. Powell. 2011. The kinase mTOR regulates the differentiation of helper T cells through the selective activation of signaling by mTORC1 and mTORC2. Nature Immunology 12 (4): 295–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chornoguz, O., R.S. Hagan, A. Haile, M.L. Arwood, C.J. Gamper, A. Banerjee, and J.D. Powell. 2017. mTORC1 promotes T-bet phosphorylation to regulate Th1 differentiation. Journal of Immunology 198 (10): 3939–3948.

    Article  CAS  Google Scholar 

  41. Nomura, M., K. Shiiba, C. Katagiri, I. Kasugai, K. Masuda, I. Sato, M. Sato, Y. Kakugawa, E. Nomura, K. Hayashi, Y. Nakamura, T. Nagata, T. Otsuka, R. Katakura, Y. Yamashita, M. Sato, N. Tanuma, and H. Shima. 2012. Novel function of MKP-5/DUSP10, a phosphatase of stress-activated kinases, on ERK-dependent gene expression, and upregulation of its gene expression in colon carcinomas. Oncology Reports 28 (3): 931–936.

    CAS  PubMed  Google Scholar 

  42. Zhang, Y., J.N. Blattman, N.J. Kennedy, J. Duong, T. Nguyen, Y. Wang, R.J. Davis, P.D. Greenberg, R.A. Flavell, and C. Dong. 2004. Regulation of innate and adaptive immune responses by MAP kinase phosphatase 5. Nature 430 (7001): 793–797.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Farshid Noorbakhsh or Mazdak Ganjalikhani Hakemi.

Ethics declarations

All experiments were performed in accordance with guidelines of the Research Ethics Committee of Isfahan University of Medical Sciences.

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All experiments were performed in accordance with guidelines of the Research Ethics Committee of Isfahan University of Medical Sciences (Code of Ethics: IR.MUI.REC.1394.3.134).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaei, N., Talebi, F., Ghorbani, S. et al. MicroRNA-92a Drives Th1 Responses in the Experimental Autoimmune Encephalomyelitis. Inflammation 42, 235–245 (2019). https://doi.org/10.1007/s10753-018-0887-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-018-0887-3

KEY WORDS

Navigation