Skip to main content
Log in

Zingerone Mitigates Carrageenan-Induced Inflammation Through Antioxidant and Anti-inflammatory Activities

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Inflammation is the body’s response against various pathogens and has a critical role in numerous diseases. Zingerone (Zing), a bioactive substance derived from ginger root, has a variety of pharmacological properties, such as reducing inflammation, and antioxidant effects. We aimed to evaluate the beneficial effects of Zing in a carrageenan-induced inflammation model. Paw edema induced by carrageenan (100 μl of 1%) was used to induce acute inflammation in rats. Different doses of Zing (10, 20, and 40 mg/kg) were administered intraperitoneally. Paw tissue levels of MDA, NO, CAT, SOD, GPx, GSH, COX-2, PGE2, TNF-α, and IL-1β were estimated. Our results showed that Zing, especially at the highest dose of 40 mg/kg, significantly reduced paw swelling in carrageenan-injected animals. Zing significantly increased paw enzymatic and nonenzymatic antioxidants except CAT. It also decreased paw levels of MDA, NO, COX-2, PGE2, TNF-α, and IL-1β. The results of this study show that Zing may provide an alternative for the clinical control of inflammation through antioxidant and anti-inflammatory activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Abdelazeem, A.H., S.A. Abdelatef, M.T. El-Saadi, H.A. Omar, S.I. Khan, C.R. McCurdy, and S.M. El-Moghazy. 2014. Novel pyrazolopyrimidine derivatives targeting COXs and iNOS enzymes; design, synthesis and biological evaluation as potential anti-inflammatory agents. European Journal of Pharmaceutical Sciences 62: 197–211. https://doi.org/10.1016/j.ejps.2014.05.025.

    Article  CAS  PubMed  Google Scholar 

  2. Aebi, Hugo. 1984. Catalase in vitro. Methods in Enzymology 105: 121–126.

    Article  CAS  PubMed  Google Scholar 

  3. Ahmad, B., M.U. Rehman, I. Amin, M.U.R. Mir, S.B. Ahmad, A. Farooq, S. Muzamil, I. Hussain, M. Masoodi, and B. Fatima. 2018. Zingerone (4-(4-hydroxy-3-methylphenyl) butan-2-one) protects against alloxan-induced diabetes via alleviation of oxidative stress and inflammation: probable role of NF-kB activation. Saudi Pharmaceutical Journal 26 (8): 1137–1145. https://doi.org/10.1016/j.jsps.2018.07.001.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alibakhshi, T., M.J. Khodayar, L. Khorsandi, M. Rashno, and L. Zeidooni. 2018. Protective effects of zingerone on oxidative stress and inflammation in cisplatin-induced rat nephrotoxicity. Biomedicine & Pharmacotherapy 105: 225–232. https://doi.org/10.1016/j.biopha.2018.05.085.

    Article  CAS  Google Scholar 

  5. Arulselvan, P., M.T. Fard, W.S. Tan, S. Gothai, S. Fakurazi, M.E. Norhaizan, and S.S. Kumar. 2016. Role of antioxidants and natural products in inflammation. Oxidative Medicine and Cellular Longevity 2016: 5276130–5276115. https://doi.org/10.1155/2016/5276130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Bradford, Marion M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72 (1): 248–254.

    Article  CAS  PubMed  Google Scholar 

  7. Buege, John A., and S.D. Aust. 1978. Microsomal lipid peroxidation. Methods in Enzymology 52: 302–310.

    Article  CAS  PubMed  Google Scholar 

  8. Chen, L., H. Deng, H. Cui, J. Fang, Z. Zuo, J. Deng, Y. Li, X. Wang, and L. Zhao. 2018. Inflammatory responses and inflammation-associated diseases in organs. Oncotarget 9 (6): 7204–7218. https://doi.org/10.18632/oncotarget.23208.

    Article  PubMed  Google Scholar 

  9. Choi, J.G., S.Y. Kim, M. Jeong, and M.S. Oh. 2018. Pharmacotherapeutic potential of ginger and its compounds in age-related neurological disorders. Pharmacology & Therapeutics 182: 56–69. https://doi.org/10.1016/j.pharmthera.2017.08.010.

    Article  CAS  Google Scholar 

  10. Chou, T.C. 2003. Anti-inflammatory and analgesic effects of paeonol in carrageenan-evoked thermal hyperalgesia. British Journal of Pharmacology 139 (6): 1146–1152. https://doi.org/10.1038/sj.bjp.0705360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Conforti, Filomena, Silvio Sosa, Mariangela Marrelli, Federica Menichini, Giancarlo A. Statti, Dimitar Uzunov, Aurelia Tubaro, and Francesco Menichini. 2009. The protective ability of Mediterranean dietary plants against the oxidative damage: the role of radical oxygen species in inflammation and the polyphenol, flavonoid and sterol contents. Food Chemistry 112 (3): 587–594.

    Article  CAS  Google Scholar 

  12. de Aquino, P.E., T.R. Magalhaes, L.A. Nicolau, L.K. Leal, N.C. de Aquino, S.M. Dos Santos, K.R. Neves, E.R. Silveira, and G.S. Viana. 2017. The anti-inflammatory effects of N-methyl-(2S,4R)-trans-4-hydroxy-l-proline from Syderoxylon obtusifolium are related to its inhibition of TNF-alpha and inflammatory enzymes. Phytomedicine 24: 14–23. https://doi.org/10.1016/j.phymed.2016.11.010.

    Article  CAS  PubMed  Google Scholar 

  13. Dharmasiri, M.G., J.R. Jayakody, G. Galhena, S.S. Liyanage, and W.D. Ratnasooriya. 2003. Anti-inflammatory and analgesic activities of mature fresh leaves of Vitex negundo. Journal of Ethnopharmacology 87 (2-3): 199–206. https://doi.org/10.1016/s0378-8741(03)00159-4.

    Article  CAS  PubMed  Google Scholar 

  14. Ellman, George L. 1959. Tissue sulfhydryl groups. Archives of Biochemistry and Biophysics 82 (1): 70–77.

    Article  CAS  PubMed  Google Scholar 

  15. Germolec, D.R., K.A. Shipkowski, R.P. Frawley, and E. Evans. 2018. Markers of Inflammation. Methods in Molecular Biology 1803: 57–79. https://doi.org/10.1007/978-1-4939-8549-4_5.

    Article  CAS  PubMed  Google Scholar 

  16. Ghaznavi, H., I. Fatemi, H. Kalantari, S.M.T. Hosseini Tabatabaei, M. Mehrabani, B. Gholamine, M. Kalantar, S. Mehrzadi, and M. Goudarzi. 2018. Ameliorative effects of gallic acid on gentamicin-induced nephrotoxicity in rats. Journal of Asian Natural Products Research 20 (12): 1182–1193. https://doi.org/10.1080/10286020.2017.1384819.

    Article  CAS  PubMed  Google Scholar 

  17. Goudarzi, M., M.A. Mombeini, I. Fatemi, A. Aminzadeh, H. Kalantari, A. Nesari, H. Najafzadehvarzi, and S. Mehrzadi. 2019. Neuroprotective effects of Ellagic acid against acrylamide-induced neurotoxicity in rats. Neurological Research 41 (5): 419–428. https://doi.org/10.1080/01616412.2019.1576319.

    Article  CAS  PubMed  Google Scholar 

  18. Henschke, Nicholas, Steven J Kamper, and Chris G Maher. 2015. The epidemiology and economic consequences of pain. Mayo Clinic Proceedings: Elsevier.

  19. Houshmand, G., M.T. Mansouri, B. Naghizadeh, A.A. Hemmati, and M. Hashemitabar. 2016. Potentiation of indomethacin-induced anti-inflammatory response by pioglitazone in carrageenan-induced acute inflammation in rats: role of PPARgamma receptors. International Immunopharmacology 38: 434–442. https://doi.org/10.1016/j.intimp.2016.06.027.

    Article  CAS  PubMed  Google Scholar 

  20. Hunter, Philip. 2012. The inflammation theory of disease. EMBO Reports 13 (11): 968–970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Javadi, Iraj, Mohammadreza Rashidi Nooshabadi, Mehdi Goudarzi, and Rahimeh Roudbari. 2015. Protective effects of celery (Apium graveloens) seed extract on bleomycin-induced pulmonary fibrosis in rats. Journal of Babol University of Medical Sciences 17 (1): 70–76.

    Google Scholar 

  22. Kandemir, F.M., S. Yildirim, S. Kucukler, C. Caglayan, A. Mahamadu, and M.B. Dortbudak. 2018. Therapeutic efficacy of zingerone against vancomycin-induced oxidative stress, inflammation, apoptosis and aquaporin 1 permeability in rat kidney. Biomedicine & Pharmacotherapy 105: 981–991. https://doi.org/10.1016/j.biopha.2018.06.048.

    Article  CAS  Google Scholar 

  23. Kandemir, F.M., S. Yildirim, C. Caglayan, S. Kucukler, and G. Eser. 2019. Protective effects of zingerone on cisplatin-induced nephrotoxicity in female rats. Environmental Science and Pollution Research International 26 (22): 22562–22574. https://doi.org/10.1007/s11356-019-05505-3.

    Article  CAS  PubMed  Google Scholar 

  24. Kaygusuzoglu, E., C. Caglayan, F.M. Kandemir, S. Yildirim, S. Kucukler, M.A. Kilinc, and Y.S. Saglam. 2018. Zingerone ameliorates cisplatin-induced ovarian and uterine toxicity via suppression of sex hormone imbalances, oxidative stress, inflammation and apoptosis in female Wistar rats. Biomedicine & Pharmacotherapy 102: 517–530. https://doi.org/10.1016/j.biopha.2018.03.119.

    Article  CAS  Google Scholar 

  25. Lee, B.S., C. Lee, S. Yang, S.K. Ku, and J.S. Bae. 2019. Renal protective effects of zingerone in a mouse model of sepsis. BMB Reports 52 (4): 271–276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Li, S., Y. Wang, M. Zhao, J. Wu, and S. Peng. 2015. BPIC: a novel anti-tumor lead capable of inhibiting inflammation and scavenging free radicals. Bioorganic & Medicinal Chemistry Letters 25 (5): 1146–1150. https://doi.org/10.1016/j.bmcl.2014.12.013.

    Article  CAS  Google Scholar 

  27. Mahomoodally, M.F., M.Z. Aumeeruddy, K.R.R. Rengasamy, S. Roshan, S. Hammad, J. Pandohee, X. Hu, and G. Zengin. 2019. Ginger and its active compounds in cancer therapy: from folk uses to nano-therapeutic applications. Seminars in Cancer Biology. https://doi.org/10.1016/j.semcancer.2019.08.009.

  28. Mani, V., S. Arivalagan, A.I. Siddique, and N. Namasivayam. 2016. Antioxidant and anti-inflammatory role of zingerone in ethanol-induced hepatotoxicity. Molecular and Cellular Biochemistry 421 (1-2): 169–181. https://doi.org/10.1007/s11010-016-2798-7.

    Article  CAS  PubMed  Google Scholar 

  29. Mark, K.S., W.J. Trickler, and D.W. Miller. 2001. Tumor necrosis factor-alpha induces cyclooxygenase-2 expression and prostaglandin release in brain microvessel endothelial cells. The Journal of Pharmacology and Experimental Therapeutics 297 (3): 1051–1058.

    CAS  PubMed  Google Scholar 

  30. Martin, Joseph P., Michael Dailey, and Elliott Sugarman. 1987. Negative and positive assays of superoxide dismutase based on hematoxylin autoxidation. Archives of Biochemistry and Biophysics 255 (2): 329–336.

    Article  CAS  PubMed  Google Scholar 

  31. Opdyke, D.L., and C. Letizia. 1982. Fragrance raw materials monographs. Food and Chemical Toxicology 20 (6): 637–852. https://doi.org/10.1016/S0015-6264(82)80217-4.

    Article  Google Scholar 

  32. Rafiee, Z., L. Khorsandi, and F. Nejad-Dehbashi. 2019. Protective effect of zingerone against mouse testicular damage induced by zinc oxide nanoparticles. Environmental Science and Pollution Research International 26 (25): 25814–25824. https://doi.org/10.1007/s11356-019-05818-3.

    Article  CAS  PubMed  Google Scholar 

  33. Seibert, K., Y. Zhang, K. Leahy, S. Hauser, J. Masferrer, W. Perkins, L. Lee, and P. Isakson. 1994. Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proceedings of the National Academy of Sciences of the United States of America 91 (25): 12013–12017. https://doi.org/10.1073/pnas.91.25.12013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sengar, N., A. Joshi, S.K. Prasad, and S. Hemalatha. 2015. Anti-inflammatory, analgesic and anti-pyretic activities of standardized root extract of Jasminum sambac. Journal of Ethnopharmacology 160: 140–148. https://doi.org/10.1016/j.jep.2014.11.039.

    Article  PubMed  Google Scholar 

  35. Soliman, A.F., L.M. Anees, and D.M. Ibrahim. 2018. Cardioprotective effect of zingerone against oxidative stress, inflammation, and apoptosis induced by cisplatin or gamma radiation in rats. Naunyn-Schmiedeberg's Archives of Pharmacology 391 (8): 819–832. https://doi.org/10.1007/s00210-018-1506-4.

    Article  CAS  PubMed  Google Scholar 

  36. Tracey, W. Ross, Joel Linden, Michael J. Peach, and Roger A. Johns. 1990. Comparison of spectrophotometric and biological assays for nitric oxide (NO) and endothelium-derived relaxing factor (EDRF): nonspecificity of the diazotization reaction for NO and failure to detect EDRF. Journal of Pharmacology and Experimental Therapeutics 252 (3): 922–928.

    CAS  Google Scholar 

  37. Vinegar, R., W. Schreiber, and R. Hugo. 1969. Biphasic development of carrageenin edema in rats. The Journal of Pharmacology and Experimental Therapeutics 166 (1): 96–103.

    CAS  PubMed  Google Scholar 

  38. Yazdi, A.S., and K. Ghoreschi. 2016. The interleukin-1 family. Advances in Experimental Medicine and Biology 941: 21–29. https://doi.org/10.1007/978-94-024-0921-5_2.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was funded by the Deputy of Research, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran (grant number: MPRC-9707).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Goudarzi.

Ethics declarations

All procedures were conducted according to the Ethical Guideline for Research, Ahvaz University (Ethics code: IR.AJUMS.ABHC.REC.1397.002).

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehrzadi, S., Khalili, H., Fatemi, I. et al. Zingerone Mitigates Carrageenan-Induced Inflammation Through Antioxidant and Anti-inflammatory Activities. Inflammation 44, 186–193 (2021). https://doi.org/10.1007/s10753-020-01320-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01320-y

KEY WORDS

Navigation