Skip to main content

Advertisement

Log in

Destructive Roles of Fibroblast-like Synoviocytes in Chronic Inflammation and Joint Damage in Rheumatoid Arthritis

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

A Correction to this article was published on 14 December 2020

This article has been updated

Abstract

Fibroblast-like synoviocytes (FLSs) are important non-immune cells located mostly in the inner layer of the synovium. Indeed, these cells are specialized mesenchymal cells, implicated in collagen homeostasis of the articular joint and provide extracellular matrix (ECM) materials for cartilage and contribute to joint destruction via multiple mechanisms. RA FLS interactions with immune and non-immune cells lead to the development and organization of tertiary structures such as ectopic lymphoid-like structures (ELSs), tertiary lymphoid organs (TLOs), and secretion of proinflammatory cytokines. The interaction of RA FLS cells with immune and non-immune cells leads to stimulation and activation of effector immune cells. Pathological role of RA FLS cells has been reported for many years, while molecular and cellular mechanisms are not completely understood yet. In this review, we tried to summarize the latest findings about the role of FLS cells in ELS formation, joint destruction, interactions with immune and non-immune cells, as well as potential therapeutic options in rheumatoid arthritis (RA) treatment. Our study revealed data about interactions between RA FLS and immune/non-immune cells as well as the role of RA FLS cells in joint damage, ELS formation, and neoangiogenesis, which provide useful information for developing new approaches for RA treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  1. Turesson, C., W. O’fallon, C. Crowson, S. Gabriel, and E.L. Matteson. 2003. Extra-articular disease manifestations in rheumatoid arthritis: incidence trends and risk factors over 46 years. Annals of the Rheumatic Diseases 62 (8): 722–727.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Karami J, Masoumi M, Khorramdelazad H, Bashiri H, Darvishi P, Sereshki HA et al. 2020. Role of autophagy in the pathogenesis of rheumatoid arthritis: latest evidence and therapeutic approaches. Life Sciences. 117734.

  3. Fang, Q., C. Zhou, and K.S. Nandakumar. 2020. Molecular and cellular pathways contributing to joint damage in rheumatoid arthritis. Mediators of Inflammation 2020: 1–20.

    Google Scholar 

  4. McInnes, I.B., and G. Schett. 2011. The pathogenesis of rheumatoid arthritis. New England Journal of Medicine 365 (23): 2205–2219.

    CAS  Google Scholar 

  5. Gregersen, P.K., J. Silver, and R.J. Winchester. 1987. The shared epitope hypothesis. An approach to understanding the molecular genetics of susceptibility to rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 30 (11): 1205–1213.

    CAS  Google Scholar 

  6. Karami, J., S. Aslani, A. Jamshidi, M. Garshasbi, and M. Mahmoudi. 2019. Genetic implications in the pathogenesis of rheumatoid arthritis; an updated review. Gene. 702: 8–16.

    CAS  PubMed  Google Scholar 

  7. Alizadeh, Z., A. Farazmand, M. Akhlaghi, A.R. Jamshidi, A. Shahlaee, J. Karami, et al. 2016. STAT4 rs7574865 polymorphism in Iranian patients with rheumatoid arthritis. Indian Journal of Rheumatology 11 (2): 78–81.

    Google Scholar 

  8. Wegner, N., R. Wait, A. Sroka, S. Eick, K.A. Nguyen, K. Lundberg, A. Kinloch, S. Culshaw, J. Potempa, and P.J. Venables. 2010. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: Implications for autoimmunity in rheumatoid arthritis. Arthritis and Rheumatism 62 (9): 2662–2672.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Mahdi, H., B.A. Fisher, H. Källberg, D. Plant, V. Malmström, J. Rönnelid, P. Charles, B. Ding, L. Alfredsson, L. Padyukov, D.P.M. Symmons, P.J. Venables, L. Klareskog, and K. Lundberg. 2009. Specific interaction between genotype, smoking and autoimmunity to citrullinated α-enolase in the etiology of rheumatoid arthritis. Nature Genetics 41 (12): 1319–1324.

    CAS  PubMed  Google Scholar 

  10. Deane, K.D., and H. El-Gabalawy. 2014. Pathogenesis and prevention of rheumatic disease: focus on preclinical RA and SLE. Nature Reviews Rheumatology 10 (4): 212–228.

    CAS  PubMed  Google Scholar 

  11. Foulquier, C., M. Sebbag, C. Clavel, S. Chapuy-Regaud, R. Al Badine, M.C. Méchin, et al. 2007. Peptidyl arginine deiminase type 2 (PAD-2) and PAD-4 but not PAD-1, PAD-3, and PAD-6 are expressed in rheumatoid arthritis synovium in close association with tissue inflammation. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 56 (11): 3541–3553.

    CAS  Google Scholar 

  12. Koppejan, H., L. Trouw, J. Sokolove, L. Lahey, T. Huizinga, I. Smolik, et al. 2016. Role of anti–carbamylated protein antibodies compared to anti–citrullinated protein antibodies in indigenous North Americans with rheumatoid arthritis, their first-degree relatives, and healthy controls. Arthritis & Rheumatology. 68 (9): 2090–2098.

    CAS  Google Scholar 

  13. Rantapää-Dahlqvist, S., B.A. De Jong, E. Berglin, G. Hallmans, G. Wadell, H. Stenlund, et al. 2003. Antibodies against cyclic citrullinated peptide and IgA rheumatoid factor predict the development of rheumatoid arthritis. Arthritis and Rheumatism 48 (10): 2741–2749.

    PubMed  Google Scholar 

  14. Sokolove J, Bromberg R, Deane KD, Lahey LJ, Derber LA, Chandra PE et al. 2012. Autoantibody epitope spreading in the pre-clinical phase predicts progression to rheumatoid arthritis. PloS one. 7(5).

  15. Seyler, T.M., Y.W. Park, S. Takemura, R.J. Bram, P.J. Kurtin, J.J. Goronzy, and C.M. Weyand. 2005. BLyS and APRIL in rheumatoid arthritis. The Journal of Clinical Investigation 115 (11): 3083–3092.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Rivellese F, Pontarini E, Pitzalis C. 2020. Tertiary lymphoid organs in rheumatoid arthritis.

  17. Tan, E.M., and J.S. Smolen. 2016. Historical observations contributing insights on etiopathogenesis of rheumatoid arthritis and role of rheumatoid factor. Journal of Experimental Medicine 213 (10): 1937–1950.

    CAS  Google Scholar 

  18. Pitzalis, C., G.W. Jones, M. Bombardieri, and S.A. Jones. 2014. Ectopic lymphoid-like structures in infection, cancer and autoimmunity. Nature Reviews Immunology 14 (7): 447–462.

    CAS  PubMed  Google Scholar 

  19. Carmona-Rivera C, Carlucci PM, Moore E, Lingampalli N, Uchtenhagen H, James E et al. 2017. Synovial fibroblast-neutrophil interactions promote pathogenic adaptive immunity in rheumatoid arthritis. Science immunology. 2(10).

  20. Bartok, B., and G.S. Firestein. 2010. Fibroblast-like synoviocytes: key effector cells in rheumatoid arthritis. Immunological Reviews 233 (1): 233–255.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Karami, J., S. Aslani, M.N. Tahmasebi, M.J. Mousavi, A. Sharafat Vaziri, A. Jamshidi, E. Farhadi, and M. Mahmoudi. 2020. Epigenetics in rheumatoid arthritis; fibroblast-like synoviocytes as an emerging paradigm in the pathogenesis of the disease. Immunology and Cell Biology 98 (3): 171–186.

    PubMed  Google Scholar 

  22. O’Neil, L.J., and M.J. Kaplan. 2019. Neutrophils in rheumatoid arthritis: breaking immune tolerance and fueling disease. Trends in Molecular Medicine 25: 215–227.

    PubMed  Google Scholar 

  23. Yoshitomi, H. 2019. Regulation of immune responses and chronic inflammation by fibroblast-like synoviocytes. Frontiers in Immunology 10: 1395.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kishimoto, T. 2006. Interleukin-6: discovery of a pleiotropic cytokine. Arthritis Research & Therapy 8 (S2): S2.

    Google Scholar 

  25. Leizer T, Cebon J, Layton JE, Hamilton JA 1990. Cytokine regulation of colony-stimulating factor production in cultured human synovial fibroblasts: I. Induction of GM-CSF and G-CSF production by interleukin-1 and tumor necrosis factor.

  26. Perlman, H., K. Bradley, H. Liu, S. Cole, E. Shamiyeh, R.C. Smith, K. Walsh, S. Fiore, A.E. Koch, G.S. Firestein, G.K. Haines III, and R.M. Pope. 2003. IL-6 and matrix metalloproteinase-1 are regulated by the cyclin-dependent kinase inhibitor p21 in synovial fibroblasts. The Journal of Immunology. 170 (2): 838–845.

    CAS  PubMed  Google Scholar 

  27. Mor, A., S.B. Abramson, and M.H. Pillinger. 2005. The fibroblast-like synovial cell in rheumatoid arthritis: a key player in inflammation and joint destruction. Clinical Immunology 115 (2): 118–128.

    CAS  PubMed  Google Scholar 

  28. Amento, E.P., A.K. Bhan, K.G. McCullagh, and S.M. Krane. 1985. Influences of gamma interferon on synovial fibroblast-like cells. Ia induction and inhibition of collagen synthesis. The Journal of Clinical Investigation 76 (2): 837–848.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Palmer, G., F. Mezin, C. Juge-Aubry, C. Plater-Zyberk, C. Gabay, and P. Guerne. 2004. Interferon β stimulates interleukin 1 receptor antagonist production in human articular chondrocytes and synovial fibroblasts. Annals of the Rheumatic Diseases 63 (1): 43–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Brescia, A.C., M.M. Simonds, S.M. McCahan, P.T. Fawcett, and C.D. Rose. 2014. The role of transforming growth factor β signaling in fibroblast-like synoviocytes from patients with oligoarticular juvenile idiopathic arthritis: dysregulation of transforming growth factor β signaling, including overexpression of bone morphogenetic protein 4, may lead to a chondrocyte phenotype and may contribute to bony hypertrophy. Arthritis & Rhematology 66 (5): 1352–1362.

    CAS  Google Scholar 

  31. Pohlers, D., A. Beyer, D. Koczan, T. Wilhelm, H.-J. Thiesen, and R.W. Kinne. 2007. Constitutive upregulation of the transforming growth factor-β pathway in rheumatoid arthritis synovial fibroblasts. Arthritis Research & Therapy 9 (3): R59.

    Google Scholar 

  32. You, S., S.-A. Yoo, S. Choi, J.-Y. Kim, S.-J. Park, J.D. Ji, T.H. Kim, K.J. Kim, C.S. Cho, D. Hwang, and W.U. Kim. 2014. Identification of key regulators for the migration and invasion of rheumatoid synoviocytes through a systems approach. Proceedings of the National Academy of Sciences 111 (1): 550–555.

    CAS  Google Scholar 

  33. Hoeffel, G., Y. Wang, M. Greter, P. See, P. Teo, B. Malleret, M. Leboeuf, D. Low, G. Oller, F. Almeida, S.H.Y. Choy, M. Grisotto, L. Renia, S.J. Conway, E.R. Stanley, J.K.Y. Chan, L.G. Ng, I.M. Samokhvalov, M. Merad, and F. Ginhoux. 2012. Adult Langerhans cells derive predominantly from embryonic fetal liver monocytes with a minor contribution of yolk sac–derived macrophages. Journal of Experimental Medicine 209 (6): 1167–1181.

    CAS  Google Scholar 

  34. Jakubzick, C., E.L. Gautier, S.L. Gibbings, D.K. Sojka, A. Schlitzer, T.E. Johnson, S. Ivanov, Q. Duan, S. Bala, T. Condon, N. van Rooijen, J.R. Grainger, Y. Belkaid, A. Ma’ayan, D.W.H. Riches, W.M. Yokoyama, F. Ginhoux, P.M. Henson, and G.J. Randolph. 2013. Minimal differentiation of classical monocytes as they survey steady-state tissues and transport antigen to lymph nodes. Immunity. 39 (3): 599–610.

    CAS  PubMed  Google Scholar 

  35. Kramer, I., A. Wibulswas, D. Croft, and E. Genot. 2003. Rheumatoid arthritis: targeting the proliferative fibroblasts. Progress in Cell Cycle Research 5: 59–70.

    PubMed  Google Scholar 

  36. Smith M, Walker J 2004. Apoptosis a relevant therapeutic target in rheumatoid arthritis?. Oxford University Press.

  37. Kimberly, R., T. Zhou, J.D. Mountz, M. Ohtsuki, W.J. Koopman, L.Z. Zhang, et al. 2003. TRAIL-R2 (DR5) mediates apoptosis of. Journal of Immunology 171: 1061–1069.

    Google Scholar 

  38. Huber, L., O. Distler, I. Tarner, R. Gay, S. Gay, and T. Pap. 2006. Synovial fibroblasts: key players in rheumatoid arthritis. Rheumatology. 45 (6): 669–675.

    CAS  PubMed  Google Scholar 

  39. Mizoguchi, F., K. Slowikowski, K. Wei, J.L. Marshall, D.A. Rao, S.K. Chang, et al. 2018. Functionally distinct disease-associated fibroblast subsets in rheumatoid arthritis. Nature Communications 9 (1): 1–11.

    CAS  Google Scholar 

  40. Bulet, P., R. Stöcklin, and L. Menin. 2004. Anti-microbial peptides: from invertebrates to vertebrates. Immunological Reviews 198 (1): 169–184.

    CAS  PubMed  Google Scholar 

  41. Bombardieri, M., M. Lewis, and C. Pitzalis. 2017. Ectopic lymphoid neogenesis in rheumatic autoimmune diseases. Nature Reviews Rheumatology 13 (3): 141–154.

    CAS  PubMed  Google Scholar 

  42. Canete, J., R. Celis, C. Moll, E. Izquierdo, S. Marsal, R. Sanmarti, et al. 2009. Clinical significance of synovial lymphoid neogenesis and its reversal after anti-tumour necrosis factor α therapy in rheumatoid arthritis. Annals of the Rheumatic Diseases 68 (5): 751–756.

    CAS  PubMed  Google Scholar 

  43. Moyron-Quiroz, J.E., J. Rangel-Moreno, L. Hartson, K. Kusser, M.P. Tighe, K.D. Klonowski, L. Lefrançois, L.S. Cauley, A.G. Harmsen, F.E. Lund, and T.D. Randall. 2006. Persistence and responsiveness of immunologic memory in the absence of secondary lymphoid organs. Immunity. 25 (4): 643–654.

    CAS  PubMed  Google Scholar 

  44. Harada, S., M. Yamamura, H. Okamoto, Y. Morita, M. Kawashima, T. Aita, and H. Makino. 1999. Production of interleukin-7 and interleukin-15 by fibroblast-like synoviocytes from patients with rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 42 (7): 1508–1516.

    CAS  Google Scholar 

  45. Danks, L., N. Komatsu, M.M. Guerrini, S. Sawa, M. Armaka, G. Kollias, T. Nakashima, and H. Takayanagi. 2016. RANKL expressed on synovial fibroblasts is primarily responsible for bone erosions during joint inflammation. Annals of the Rheumatic Diseases 75 (6): 1187–1195.

    CAS  PubMed  Google Scholar 

  46. Ekwall, A.-K.H., T. Eisler, C. Anderberg, C. Jin, N. Karlsson, M. Brisslert, and M.I. Bokarewa. 2011. The tumour-associated glycoprotein podoplanin is expressed in fibroblast-like synoviocytes of the hyperplastic synovial lining layer in rheumatoid arthritis. Arthritis Research & Therapy 13 (2): R40.

    CAS  Google Scholar 

  47. Pickens, S.R., N.D. Chamberlain, M.V. Volin, R.M. Pope, A.M. Mandelin, and S. Shahrara. 2011. Characterization of CCL19 and CCL21 in rheumatoid arthritis. Arthritis and Rheumatism 63 (4): 914–922.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Bradfield, P.F., N. Amft, E. Vernon-Wilson, A.E. Exley, G. Parsonage, G.E. Rainger, G.B. Nash, A.M.C. Thomas, D.L. Simmons, M. Salmon, and C.D. Buckley. 2003. Rheumatoid fibroblast-like synoviocytes overexpress the chemokine stromal cell–derived factor 1 (CXCL12), which supports distinct patterns and rates of CD4+ and CD8+ T cell migration within synovial tissue. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 48 (9): 2472–2482.

    CAS  Google Scholar 

  49. Braun, A., S. Takemura, A.N. Vallejo, J.J. Goronzy, and C.M. Weyand. 2004. Lymphotoxin β–mediated stimulation of synoviocytes in rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 50 (7): 2140–2150.

    CAS  Google Scholar 

  50. Mori, M., M. Hashimoto, T. Matsuo, T. Fujii, M. Furu, H. Ito, H. Yoshitomi, J. Hirose, Y. Ito, S. Akizuki, R. Nakashima, Y. Imura, N. Yukawa, H. Yoshifuji, K. Ohmura, and T. Mimori. 2017. Cell-contact-dependent activation of CD4+ T cells by adhesion molecules on synovial fibroblasts. Modern Rheumatology 27 (3): 448–456.

    CAS  PubMed  Google Scholar 

  51. Manzo, A., B. Vitolo, F. Humby, R. Caporali, D. Jarrossay, F. Dell'Accio, L. Ciardelli, M. Uguccioni, C. Montecucco, and C. Pitzalis. 2008. Mature antigen-experienced T helper cells synthesize and secrete the B cell chemoattractant CXCL13 in the inflammatory environment of the rheumatoid joint. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 58 (11): 3377–3387.

    CAS  Google Scholar 

  52. Chan, A., A. Filer, G. Parsonage, S. Kollnberger, R. Gundle, C.D. Buckley, and P. Bowness. 2008. Mediation of the proinflammatory cytokine response in rheumatoid arthritis and spondylarthritis by interactions between fibroblast-like synoviocytes and natural killer cells. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 58 (3): 707–717.

    CAS  Google Scholar 

  53. Leavenworth, J.W., X. Tang, H.-J. Kim, X. Wang, and H. Cantor. 2013. Amelioration of arthritis through mobilization of peptide-specific CD8+ regulatory T cells. The Journal of Clinical Investigation 123 (3): 1382–1389.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Zhang, Z., B. Yuan, N. Lu, V. Facchinetti, and Y.-J. Liu. 2011. DHX9 pairs with IPS-1 to sense double-stranded RNA in myeloid dendritic cells. The Journal of Immunology. 187 (9): 4501–4508.

    CAS  PubMed  Google Scholar 

  55. Kiener, H.P., G.F. Watts, Y. Cui, J. Wright, T.S. Thornhill, M. Sköld, et al. 2010. Synovial fibroblasts self-direct multicellular lining architecture and synthetic function in three-dimensional organ culture. Arthritis and Rheumatism 62 (3): 742–752.

    CAS  PubMed  Google Scholar 

  56. Corsiero, E., F. Pratesi, E. Prediletto, M. Bombardieri, and P. Migliorini. 2016. NETosis as source of autoantigens in rheumatoid arthritis. Frontiers in Immunology 7: 485.

    PubMed  PubMed Central  Google Scholar 

  57. Corsiero, E., M. Bombardieri, E. Carlotti, F. Pratesi, W. Robinson, P. Migliorini, and C. Pitzalis. 2016. Single cell cloning and recombinant monoclonal antibodies generation from RA synovial B cells reveal frequent targeting of citrullinated histones of NETs. Annals of the Rheumatic Diseases 75 (10): 1866–1875.

    CAS  PubMed  Google Scholar 

  58. Rims, C., H. Uchtenhagen, M.J. Kaplan, C. Carmona-Rivera, P. Carlucci, K. Mikecz, A. Markovics, J. Carlin, J.H. Buckner, and E.A. James. 2019. Citrullinated aggrecan epitopes as targets of autoreactive CD 4+ T cells in patients with rheumatoid arthritis. Arthritis & Rheumatology. 71 (4): 518–528.

    CAS  Google Scholar 

  59. Fernandez, M.-I., B. Regnault, C. Mulet, M. Tanguy, P. Jay, P.J. Sansonetti, and T. Pédron. 2008. Maturation of paneth cells induces the refractory state of newborn mice to Shigella infection. The Journal of Immunology. 180 (7): 4924–4930.

    CAS  PubMed  Google Scholar 

  60. Doorenspleet, M., P. Klarenbeek, M. de Hair, B. van Schaik, R. Esveldt, A. van Kampen, et al. 2014. Rheumatoid arthritis synovial tissue harbours dominant B-cell and plasma-cell clones associated with autoreactivity. Annals of the Rheumatic Diseases 73 (4): 756–762.

    CAS  PubMed  Google Scholar 

  61. Filer, A., L.S. Ward, S. Kemble, C.S. Davies, H. Munir, R. Rogers, et al. 2017. Identification of a transitional fibroblast function in very early rheumatoid arthritis. Annals of the Rheumatic Diseases 76 (12): 2105–2112.

    CAS  PubMed  Google Scholar 

  62. Tang, Y., B. Wang, X. Sun, H. Li, X. Ouyang, J. Wei, B. Dai, Y. Zhang, and X. Li. 2017. Rheumatoid arthritis fibroblast-like synoviocytes co-cultured with PBMC increased peripheral CD4+ CXCR5+ ICOS+ T cell numbers. Clinical and Experimental Immunology 190 (3): 384–393.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Hillas, G., S. Loukides, K. Kostikas, D. Simoes, V. Petta, E. Konstantellou, P. Emmanouil, S. Papiris, N. Koulouris, and P. Bakakos. 2013. Increased levels of osteopontin in sputum supernatant of smoking asthmatics. Cytokine. 61 (1): 251–255.

    CAS  PubMed  Google Scholar 

  64. Ueno, A., M. Yamamura, M. Iwahashi, A. Okamoto, T. Aita, N. Ogawa, and H. Makino. 2005. The production of CXCR3-agonistic chemokines by synovial fibroblasts from patients with rheumatoid arthritis. Rheumatology International 25 (5): 361–367.

    CAS  PubMed  Google Scholar 

  65. Proost, P., S. Verpoest, K.V. De Borne, E. Schutyser, S. Struyf, W. Put, et al. 2004. Synergistic induction of CXCL9 and CXCL11 by Toll-like receptor ligands and interferon-γ in fibroblasts correlates with elevated levels of CXCR3 ligands in septic arthritis synovial fluids. Journal of Leukocyte Biology 75 (5): 777–784.

    CAS  PubMed  Google Scholar 

  66. Rao, D.A., M.F. Gurish, J.L. Marshall, K. Slowikowski, C.Y. Fonseka, Y. Liu, L.T. Donlin, L.A. Henderson, K. Wei, F. Mizoguchi, N.C. Teslovich, M.E. Weinblatt, E.M. Massarotti, J.S. Coblyn, S.M. Helfgott, Y.C. Lee, D.J. Todd, V.P. Bykerk, S.M. Goodman, A.B. Pernis, L.B. Ivashkiv, E.W. Karlson, P.A. Nigrovic, A. Filer, C.D. Buckley, J.A. Lederer, S. Raychaudhuri, and M.B. Brenner. 2017. Pathologically expanded peripheral T helper cell subset drives B cells in rheumatoid arthritis. Nature. 542 (7639): 110–114.

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Nanki, T., T. Imai, K. Nagasaka, Y. Urasaki, Y. Nonomura, K. Taniguchi, K. Hayashida, J. Hasegawa, O. Yoshie, and N. Miyasaka. 2002. Migration of CX3CR1-positive T cells producing type 1 cytokines and cytotoxic molecules into the synovium of patients with rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 46 (11): 2878–2883.

    CAS  Google Scholar 

  68. Tanaka, Y., T. Takeuchi, H. Umehara, T. Nanki, N. Yasuda, F. Tago, M. Kawakubo, Y. Kitahara, S. Hojo, T. Kawano, and T. Imai. 2018. Safety, pharmacokinetics, and efficacy of E6011, an antifractalkine monoclonal antibody, in a first-in-patient phase 1/2 study on rheumatoid arthritis. Modern Rheumatology 28 (1): 58–65.

    CAS  PubMed  Google Scholar 

  69. Kobayashi, S., T. Watanabe, R. Suzuki, M. Furu, H. Ito, J. Ito, S. Matsuda, and H. Yoshitomi. 2016. TGF-β induces the differentiation of human CXCL13-producing CD4+ T cells. European Journal of Immunology 46 (2): 360–371.

    CAS  PubMed  Google Scholar 

  70. Yoshitomi, H., S. Kobayashi, A. Miyagawa-Hayashino, A. Okahata, K. Doi, K. Nishitani, et al. 2018. Human Sox4 facilitates the development of CXCL13-producing helper T cells in inflammatory environments. Nature Communications 9 (1): 1–10.

    CAS  Google Scholar 

  71. Manel, N., D. Unutmaz, and D.R. Littman. 2008. The differentiation of human T H-17 cells requires transforming growth factor-β and induction of the nuclear receptor RORγt. Nature Immunology 9 (6): 641–649.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Zheng, S.G., J.H. Wang, W. Stohl, K.S. Kim, J.D. Gray, and D.A. Horwitz. 2006. TGF-β requires CTLA-4 early after T cell activation to induce FoxP3 and generate adaptive CD4+ CD25+ regulatory cells. The Journal of Immunology. 176 (6): 3321–3329.

    CAS  PubMed  Google Scholar 

  73. Neumann, E., S. Lefèvre, B. Zimmermann, S. Gay, and U. Müller-Ladner. 2010. Rheumatoid arthritis progression mediated by activated synovial fibroblasts. Trends in Molecular Medicine 16 (10): 458–468.

    CAS  PubMed  Google Scholar 

  74. Moingeon, P., H.-C. Chang, B.P. Wallner, C. Stebbins, A.Z. Frey, and E.L. Reinherz. 1989. CD2-mediated adhesion facilitates T lymphocyte antigen recognition function. Nature. 339 (6222): 312–314.

    CAS  PubMed  Google Scholar 

  75. Guo, X., Y. Pan, C. Xiao, Y. Wu, D. Cai, and J. Gu. 2012. Fractalkine stimulates cell growth and increases its expression via NF-κ B pathway in RA-FLS. International Journal of Rheumatic Diseases 15 (3): 322–329.

    CAS  PubMed  Google Scholar 

  76. Capece, T., B.L. Walling, K. Lim, K.-D. Kim, S. Bae, H.-L. Chung, D.J. Topham, and M. Kim. 2017. A novel intracellular pool of LFA-1 is critical for asymmetric CD8+ T cell activation and differentiation. Journal of Cell Biology 216 (11): 3817–3829.

    CAS  Google Scholar 

  77. Matsumoto, Y., K. Hiromatsu, T. Sakai, Y. Kobayashi, Y. Kimura, J. Usami, T. Shinzato, K. Maeda, and Y. Yoshikai. 1994. Co-stimulation with LFA-1 triggers apoptosis in γδ T cells on T cell receptor engagement. European Journal of Immunology 24 (10): 2441–2445.

    CAS  PubMed  Google Scholar 

  78. Garcia-Parajo, M.F., A. Cambi, J.A. Torreno-Pina, N. Thompson, and K. Jacobson. 2014. Nanoclustering as a dominant feature of plasma membrane organization. Journal of Cell Science 127 (23): 4995–5005.

    PubMed  PubMed Central  Google Scholar 

  79. Samuelsson, M., K. Potrzebowska, J. Lehtonen, J.P. Beech, E. Skorova, H. Uronen-Hansson, et al. 2017. RhoB controls the Rab11-mediated recycling and surface reappearance of LFA-1 in migrating T lymphocytes. Science Signaling 10 (509): eaai8629.

    PubMed  Google Scholar 

  80. Nagaev, I., M. Andersen, M. Olesen, O. Nagaeva, J. Wikberg, L. Mincheva-Nilsson, et al. 2016. Resistin gene expression is downregulated in CD 4+ T helper lymphocytes and CD 14+ monocytes in rheumatoid arthritis responding to TNF-α inhibition. Scandinavian Journal of Immunology 84 (4): 229–236.

    CAS  PubMed  Google Scholar 

  81. Solomon, D.H., E. Massarotti, R. Garg, J. Liu, C. Canning, and S. Schneeweiss. 2011. Association between disease-modifying antirheumatic drugs and diabetes risk in patients with rheumatoid arthritis and psoriasis. Jama. 305 (24): 2525–2531.

    CAS  PubMed  Google Scholar 

  82. Gao, S., X. Qi, J. Li, and L. Sang. 2017. Upregulated KAT7 in synovial fibroblasts promotes Th17 cell differentiation and infiltration in rheumatoid arthritis. Biochemical and Biophysical Research Communications 489 (2): 235–241.

    CAS  PubMed  Google Scholar 

  83. Kim, E.K., J.-E. Kwon, S.-Y. Lee, E.-J. Lee, S.-J. Moon, J. Lee, et al. 2018. IL-17-mediated mitochondrial dysfunction impairs apoptosis in rheumatoid arthritis synovial fibroblasts through activation of autophagy. Cell Death & Disease 8 (1): e2565-e.

    Google Scholar 

  84. Ganesan, R., and M. Rasool. 2017. Interleukin 17 regulates SHP-2 and IL-17RA/STAT-3 dependent Cyr61, IL-23 and GM-CSF expression and RANKL mediated osteoclastogenesis by fibroblast-like synoviocytes in rheumatoid arthritis. Molecular Immunology 91: 134–144.

    CAS  PubMed  Google Scholar 

  85. Edwards, J.C., L. Szczepański, J. Szechiński, A. Filipowicz-Sosnowska, P. Emery, D.R. Close, et al. 2004. Efficacy of B-cell–targeted therapy with rituximab in patients with rheumatoid arthritis. New England Journal of Medicine 350 (25): 2572–2581.

    CAS  Google Scholar 

  86. Bombardieri, M., N.-W. Kam, F. Brentano, K. Choi, A. Filer, D. Kyburz, I.B. McInnes, S. Gay, C. Buckley, and C. Pitzalis. 2011. A BAFF/APRIL-dependent TLR3-stimulated pathway enhances the capacity of rheumatoid synovial fibroblasts to induce AID expression and Ig class-switching in B cells. Annals of the Rheumatic Diseases 70 (10): 1857–1865.

    CAS  PubMed  Google Scholar 

  87. Mackay, F., P. Schneider, P. Rennert, and J. Browning. 2003. BAFF AND APRIL: a tutorial on B cell survival. Annual Review of Immunology 21 (1): 231–264.

    CAS  PubMed  Google Scholar 

  88. Chevalier, N., D. Jarrossay, E. Ho, D.T. Avery, C.S. Ma, D. Yu, F. Sallusto, S.G. Tangye, and C.R. Mackay. 2011. CXCR5 expressing human central memory CD4 T cells and their relevance for humoral immune responses. The Journal of Immunology. 186 (10): 5556–5568.

    CAS  PubMed  Google Scholar 

  89. Vincent, F.B., E.F. Morand, P. Schneider, and F. Mackay. 2014. The BAFF/APRIL system in SLE pathogenesis. Nature Reviews Rheumatology 10 (6): 365–373.

    CAS  PubMed  Google Scholar 

  90. Wallace, D.J., W. Stohl, R.A. Furie, J.R. Lisse, J.D. McKay, J.T. Merrill, et al. 2009. A phase II, randomized, double-blind, placebo-controlled, dose-ranging study of belimumab in patients with active systemic lupus erythematosus. Arthritis Care & Research: Official Journal of the American College of Rheumatology. 61 (9): 1168–1178.

    CAS  Google Scholar 

  91. Hunter, C.A., and S.A. Jones. 2015. IL-6 as a keystone cytokine in health and disease. Nature Immunology 16 (5): 448–457.

    CAS  PubMed  Google Scholar 

  92. Dienz, O., S.M. Eaton, J.P. Bond, W. Neveu, D. Moquin, R. Noubade, E.M. Briso, C. Charland, W.J. Leonard, G. Ciliberto, C. Teuscher, L. Haynes, and M. Rincon. 2009. The induction of antibody production by IL-6 is indirectly mediated by IL-21 produced by CD4+ T cells. Journal of Experimental Medicine 206 (1): 69–78.

    CAS  Google Scholar 

  93. Ambarus, C.A., T. Noordenbos, M.J. de Hair, P.P. Tak, and D.L. Baeten. 2012. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Research & Therapy 14 (2): R74.

    CAS  Google Scholar 

  94. Alvaro-Gracia, J.M., N.J. Zvaifler, and G.S. Firestein. 1989. Cytokines in chronic inflammatory arthritis. IV. Granulocyte/macrophage colony-stimulating factor-mediated induction of class II MHC antigen on human monocytes: a possible role in rheumatoid arthritis. The Journal of Experimental Medicine 170 (3): 865–875.

    CAS  PubMed  Google Scholar 

  95. Choy, E., D. Isenberg, T. Garrood, S. Farrow, Y. Ioannou, H. Bird, et al. 2002. Therapeutic benefit of blocking interleukin-6 activity with an anti–interleukin-6 receptor monoclonal antibody in rheumatoid arthritis: a randomized, double-blind, placebo-controlled, dose-escalation trial. Arthritis and Rheumatism 46 (12): 3143–3150.

    CAS  PubMed  Google Scholar 

  96. Maini, R.N., F.C. Breedveld, J.R. Kalden, J.S. Smolen, D. Davis, J.D. MacFarlane, et al. 1998. Therapeutic efficacy of multiple intravenous infusions of anti-tumor necrosis factor α monoclonal antibody combined with low-dose weekly methotrexate in rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 41 (9): 1552–1563.

    CAS  Google Scholar 

  97. DeWitt N. 2003. Bone and cartilage. Nature Publishing Group.

  98. Burmester, G.R., I.B. McInnes, J. Kremer, P. Miranda, M. Korkosz, J. Vencovsky, A. Rubbert-Roth, E. Mysler, M.A. Sleeman, A. Godwood, D. Sinibaldi, X. Guo, W.I. White, B. Wang, C.Y. Wu, P.C. Ryan, D. Close, M.E. Weinblatt, and EARTH EXPLORER 1 study investigators. 2017. A randomised phase IIb study of mavrilimumab, a novel GM–CSF receptor alpha monoclonal antibody, in the treatment of rheumatoid arthritis. Annals of the Rheumatic Diseases 76 (6): 1020–1030.

    CAS  PubMed  Google Scholar 

  99. Yellin, M., I. Paliienko, A. Balanescu, S. Ter-Vartanian, V. Tseluyko, L.A. Xu, et al. 2012. A phase II, randomized, double-blind, placebo-controlled study evaluating the efficacy and safety of MDX-1100, a fully human anti-CXCL10 monoclonal antibody, in combination with methotrexate in patients with rheumatoid arthritis. Arthritis and Rheumatism 64 (6): 1730–1739.

    CAS  PubMed  Google Scholar 

  100. Yasuda, H., N. Shima, N. Nakagawa, K. Yamaguchi, M. Kinosaki, S.-i. Mochizuki, et al. 1998. Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proceedings of the National Academy of Sciences 95 (7): 3597–3602.

    CAS  Google Scholar 

  101. Fuller, K., B. Wong, S. Fox, Y. Choi, and T.J. Chambers. 1998. TRANCE is necessary and sufficient for osteoblast-mediated activation of bone resorption in osteoclasts. The Journal of Experimental Medicine 188 (5): 997–1001.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Cohen, S.B., R.K. Dore, N.E. Lane, P.A. Ory, C.G. Peterfy, J.T. Sharp, D. van der Heijde, L. Zhou, W. Tsuji, R. Newmark, and Denosumab Rheumatoid Arthritis Study Group. 2008. Denosumab treatment effects on structural damage, bone mineral density, and bone turnover in rheumatoid arthritis: a twelve-month, multicenter, randomized, double-blind, placebo-controlled, phase II clinical trial. Arthritis and Rheumatism 58 (5): 1299–1309.

    CAS  PubMed  Google Scholar 

  103. Mateen, S., A. Zafar, S. Moin, A.Q. Khan, and S. Zubair. 2016. Understanding the role of cytokines in the pathogenesis of rheumatoid arthritis. Clinica Chimica Acta 455: 161–171.

    CAS  Google Scholar 

  104. Chomarat, P., M. Rissoan, J. Pin, J. Banchereau, and P. Miossec. 1995. Contribution of IL-1, CD14, and CD13 in the increased IL-6 production induced by in vitro monocyte-synoviocyte interactions. The Journal of Immunology. 155 (7): 3645–3652.

    CAS  PubMed  Google Scholar 

  105. Bondeson, J., S.D. Wainwright, S. Lauder, N. Amos, and C.E. Hughes. 2006. The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Research & Therapy 8 (6): R187.

    Google Scholar 

  106. Scott, B.B., L.M. Weisbrot, J.D. Greenwood, E.R. Bogoch, C.J. Paige, and E.C. Keystone. 1997. Rheumatoid arthritis synovial fibroblast and U937 macrophage/monocyte cell line interaction in cartilage degradation. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 40 (3): 490–498.

    CAS  Google Scholar 

  107. Tu, J., W. Hong, P. Zhang, X. Wang, H. Körner, and W. Wei. 2018. Ontology and function of fibroblast-like and macrophage-like synoviocytes: how do they talk to each other and can they be targeted for rheumatoid arthritis therapy? Frontiers in Immunology 9: 1467.

    PubMed  PubMed Central  Google Scholar 

  108. Westra, J., P.C. Limburg, P. de Boer, and M.H. van Rijswijk. 2004. Effects of RWJ 67657, a p38 mitogen activated protein kinase (MAPK) inhibitor, on the production of inflammatory mediators by rheumatoid synovial fibroblasts. Annals of the Rheumatic Diseases 63 (11): 1453–1459.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Korb, A., M. Tohidast-Akrad, E. Cetin, R. Axmann, J. Smolen, and G. Schett. 2006. Differential tissue expression and activation of p38 MAPK α, β, γ, and δ isoforms in rheumatoid arthritis. Arthritis and Rheumatism 54 (9): 2745–2756.

    CAS  PubMed  Google Scholar 

  110. Genovese, M.C., S.B. Cohen, D. Wofsy, M.E. Weinblatt, G.S. Firestein, E. Brahn, et al. 2011. A 24-week, randomized, double-blind, placebo-controlled, parallel group study of the efficacy of oral SCIO-469, a p38 mitogen-activated protein kinase inhibitor, in patients with active rheumatoid arthritis. The Journal of Rheumatology 38 (5): 846–854.

    CAS  PubMed  Google Scholar 

  111. Stanczyk, J., C. Ospelt, R.E. Gay, and S. Gay. 2006. Synovial cell activation. Current Opinion in Rheumatology 18 (3): 262–267.

    CAS  PubMed  Google Scholar 

  112. Müller-Ladner, U., J. Kriegsmann, B.N. Franklin, S. Matsumoto, T. Geiler, R.E. Gay, and S. Gay. 1996. Synovial fibroblasts of patients with rheumatoid arthritis attach to and invade normal human cartilage when engrafted into SCID mice. The American journal of pathology. 149 (5): 1607–1615.

    PubMed  PubMed Central  Google Scholar 

  113. Rengel, Y., C. Ospelt, and S. Gay. 2007. Proteinases in the joint: Clinical relevance of proteinases in joint destruction. Arthritis Research & Therapy 9 (5): 221.

    Google Scholar 

  114. Emori, T., J. Hirose, K. Ise, J.-i. Yomoda, M. Kasahara, T. Shinkuma, et al. 2017. Constitutive activation of integrin α9 augments self-directed hyperplastic and proinflammatory properties of fibroblast-like synoviocytes of rheumatoid arthritis. The Journal of Immunology. 199 (10): 3427–3436.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. Lee, D.M., H.P. Kiener, S.K. Agarwal, E.H. Noss, G.F. Watts, O. Chisaka, et al. 2007. Cadherin-11 in synovial lining formation and pathology in arthritis. Science. 315 (5814): 1006–1010.

    CAS  PubMed  Google Scholar 

  116. Rinaldi, N., M. Schwarz-Eywill, D. Weis, P. Leppelmann-Jansen, M. Lukoschek, U. Keilholz, and T.F.E. Barth. 1997. Increased expression of integrins on fibroblast-like synoviocytes from rheumatoid arthritis in vitro correlates with enhanced binding to extracellular matrix proteins. Annals of the Rheumatic Diseases 56 (1): 45–51.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Cai, P., Z. Lu, T. Jiang, Z. Wang, Y. Yang, L. Zheng, and J. Zhao. 2020. Syndecan-4 involves in the pathogenesis of rheumatoid arthritis by regulating the inflammatory response and apoptosis of fibroblast-like synoviocytes. Journal of Cellular Physiology 235 (2): 1746–1758.

    CAS  PubMed  Google Scholar 

  118. Zhang, Q., J. Wu, Q. Cao, L. Xiao, L. Wang, D. He, G. Ouyang, J. Lin, B. Shen, Y. Shi, Y. Zhang, D. Li, and N. Li. 2009. A critical role of Cyr61 in interleukin-17–dependent proliferation of fibroblast-like synoviocytes in rheumatoid arthritis. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 60 (12): 3602–3612.

    CAS  Google Scholar 

  119. Ahn, J.K., J.-M. Oh, J. Lee, E.-K. Bae, K.-S. Ahn, H.-S. Cha, and E.M. Koh. 2010. Increased extracellular survivin in the synovial fluid of rheumatoid arthritis patients: fibroblast-like synoviocytes as a potential source of extracellular survivin. Inflammation. 33 (6): 381–388.

    CAS  PubMed  Google Scholar 

  120. Wilkinson, K.A., and J.M. Henley. 2010. Mechanisms, regulation and consequences of protein SUMOylation. Biochemical Journal 428 (2): 133–145.

    CAS  Google Scholar 

  121. Shibuya, H., H. Yoshitomi, K. Murata, S. Kobayashi, M. Furu, M. Ishikawa, T. Fujii, H. Ito, and S. Matsuda. 2015. TNFα, PDGF, and TGFβ synergistically induce synovial lining hyperplasia via inducible PI3Kδ. Modern Rheumatology 25 (1): 72–78.

    CAS  PubMed  Google Scholar 

  122. Bartok, B., D.L. Boyle, Y. Liu, P. Ren, S.T. Ball, W.D. Bugbee, C. Rommel, and G.S. Firestein. 2012. PI3 kinase δ is a key regulator of synoviocyte function in rheumatoid arthritis. The American journal of pathology. 180 (5): 1906–1916.

    CAS  PubMed  Google Scholar 

  123. Astarita, J.L., V. Cremasco, J. Fu, M.C. Darnell, J.R. Peck, J.M. Nieves-Bonilla, K. Song, Y. Kondo, M.C. Woodruff, A. Gogineni, L. onder, B. Ludewig, R.M. Weimer, M.C. Carroll, D.J. Mooney, L. Xia, and S.J. Turley. 2015. The CLEC-2–podoplanin axis controls the contractility of fibroblastic reticular cells and lymph node microarchitecture. Nature Immunology 16 (1): 75–84.

    CAS  PubMed  Google Scholar 

  124. Leblond, A., Y. Allanore, and J. Avouac. 2017. Targeting synovial neoangiogenesis in rheumatoid arthritis. Autoimmunity Reviews 16 (6): 594–601.

    PubMed  Google Scholar 

  125. Naredo, E., P. Collado, A. Cruz, M.J. Palop, F. Cabero, P. Richi, L. Carmona, and M. Crespo. 2007. Longitudinal power Doppler ultrasonographic assessment of joint inflammatory activity in early rheumatoid arthritis: predictive value in disease activity and radiologic progression. Arthritis Care & Research: Official Journal of the American College of Rheumatology. 57 (1): 116–124.

    Google Scholar 

  126. Cai W-w, Yu Y, Zong S-y, Wei F. 2020. Metabolic reprogramming as a key regulator in the pathogenesis of rheumatoid arthritis. Inflammation Research :1–15.

  127. Ryu J-H, Chae C-S, Kwak J-S, Oh H, Shin Y, Huh YH et al. 2014. Hypoxia-inducible factor-2α is an essential catabolic regulator of inflammatory rheumatoid arthritis. PLoS Biology. 12(6).

  128. Madri, J.A., and S.K. Williams. 1983. Capillary endothelial cell cultures: Phenotypic modulation by matrix components. The Journal of Cell Biology 97 (1): 153–165.

    CAS  PubMed  Google Scholar 

  129. del Rey, M.J., E. Izquierdo, S. Caja, A. Usategui, B. Santiago, M. Galindo, et al. 2009. Human inflammatory synovial fibroblasts induce enhanced myeloid cell recruitment and angiogenesis through a hypoxia-inducible transcription factor 1α/vascular endothelial growth factor–mediated pathway in immunodeficient mice. Arthritis & Rheumatism: Official Journal of the American College of Rheumatology. 60 (10): 2926–2934.

    Google Scholar 

  130. Muz, B., M.N. Khan, S. Kiriakidis, and E.M. Paleolog. 2009. Hypoxia. The role of hypoxia and HIF-dependent signalling events in rheumatoid arthritis. Arthritis Research & Therapy 11 (1): 201.

    Google Scholar 

  131. Cooper, A.M., and S.A. Khader. 2007. IL-12p40: An inherently agonistic cytokine. Trends in Immunology 28 (1): 33–38.

    CAS  PubMed  Google Scholar 

  132. van de Sande, M.G., D. de Launay, M.J. de Hair, S. García, G.P. van de Sande, C.A. Wijbrandts, et al. 2013. Local synovial engagement of Angiogenic TIE-2 is associated with the development of persistent erosive rheumatoid arthritis in patients with early arthritis. Arthritis and Rheumatism 65 (12): 3073–3083.

    PubMed  Google Scholar 

  133. Del Rey, M.J., E. Izquierdo, A. Usategui, E. Gonzalo, F.J. Blanco, F. Acquadro, et al. 2010. The transcriptional response of normal and rheumatoid arthritis synovial fibroblasts to hypoxia. Arthritis and Rheumatism 62 (12): 3584–3594.

    PubMed  Google Scholar 

  134. Westra, J., G. Molema, and C. Kallenberg. 2010. Hypoxia-inducible factor-1 as regulator of angiogenesis in rheumatoid arthritis-therapeutic implications. Current Medicinal Chemistry 17 (3): 254–263.

    CAS  PubMed  Google Scholar 

  135. Nygaard G, Firestein GS. 2020. Restoring synovial homeostasis in rheumatoid arthritis by targeting fibroblast-like synoviocytes. Nature Reviews Rheumatology. 1–18.

  136. Chang, S.K., E.H. Noss, M. Chen, Z. Gu, K. Townsend, R. Grenha, L. Leon, S.Y. Lee, D.M. Lee, and M.B. Brenner. 2011. Cadherin-11 regulates fibroblast inflammation. Proceedings of the National Academy of Sciences 108 (20): 8402–8407.

    CAS  Google Scholar 

  137. Han, Z., D.L. Boyle, L. Chang, B. Bennett, M. Karin, L. Yang, A.M. Manning, and G.S. Firestein. 2001. c-Jun N-terminal kinase is required for metalloproteinase expression and joint destruction in inflammatory arthritis. The Journal of Clinical Investigation 108: 73–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  138. Vickers, N.J. 2017. Animal communication: when I’m calling you, will you answer too? Current Biology 27 (14): R713–R7R5.

    CAS  PubMed  Google Scholar 

  139. Guma, M., L.M. Ronacher, G.S. Firestein, M. Karin, and M. Corr. 2011. JNK-1 deficiency limits macrophage-mediated antigen-induced arthritis. Arthritis and Rheumatism 63 (6): 1603–1612.

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Lee, S.-i., D.L. Boyle, A. Berdeja, and G.S. Firestein. 2012. Regulation of inflammatory arthritis by the upstream kinase mitogen activated protein kinase kinase 7 in the c-Jun N-terminal kinase pathway. Arthritis Research & Therapy 14 (1): R38.

    CAS  Google Scholar 

Download references

Funding

This research project was supported by Iran University of Medical Sciences, Tehran, Iran.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Amirhossein Sahebkar or Jafar Karami.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The following statement must be added to the correspondence section: Jafar Karami at Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran. E-mail: jafar_karami@yahoo.com; karami.jaf@iums.ac.ir

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masoumi, M., Bashiri, H., Khorramdelazad, H. et al. Destructive Roles of Fibroblast-like Synoviocytes in Chronic Inflammation and Joint Damage in Rheumatoid Arthritis. Inflammation 44, 466–479 (2021). https://doi.org/10.1007/s10753-020-01371-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01371-1

KEY WORDS

Navigation