Skip to main content

Advertisement

Log in

The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Alpha 7 nicotinic acetylcholine receptor (α7nAChR) is widely distributed in the nervous and non-cholinergic immune systems. It is necessary for the cholinergic transmitter to participate in the regulation of inflammatory response and is the key element of cholinergic anti-inflammatory pathway (CAP). Because of the profound impact of CAP on the immune system, α7nAChR is considered as a potential therapeutic target for the treatment of inflammatory diseases. Available evidences confirmed that manipulation of CAP by activating α7nAChR with either endogenous acetylcholine (ACh) or cholinergic agonists can substantially alleviate inflammatory responses both in vivo and in vitro. However, the mechanism through which CAP curbs the excessive pro-inflammatory responses and maintains immune homeostasis is not fully understood. Obtained clues suggest that the crosstalk between CAP and classical inflammatory pathways is the key to elucidate the anti-inflammatory mechanism, and the impacts of CAP activation in α7nAChR-expressing immune cells are the foundation of the immunoregulatory property. In this article, we review and update the knowledge concerning the progresses of α7nAChR-based CAP, including α7nAChR properties, signal transductions, interactions with classic immune pathways, and immunoregulatory functions in different immune cells. Certain critical issues to be addressed are also highlighted. By providing a panoramic view of α7nAChR, the summarized evidences will pave the way for the development of novel anti-inflammatory reagents and strategy and inspire further researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Czura, C.J., S.G. Friedman, and K.J. Tracey. 2003. Neural inhibition of inflammation: the cholinergic anti-inflammatory pathway. Journal of Endotoxin Research 9 (6): 409–413.

    Article  CAS  PubMed  Google Scholar 

  2. Pavlov, V.A., and K.J. Tracey. 2004. Neural regulators of innate immune responses and inflammation. Cellular and Molecular Life Sciences 61 (18): 2322–2331.

    Article  CAS  PubMed  Google Scholar 

  3. Czura, C.J., and K.J. Tracey. 2005. Autonomic neural regulation of immunity. Journal of Internal Medicine 257 (2): 156–166.

    Article  CAS  PubMed  Google Scholar 

  4. Wei, W. 2016. Soft regulation of inflammatory immune response. Chinese Pharmacological Bulletin 32 (3): 297–303.

    Google Scholar 

  5. Rosas-Ballina, M., and K.J. Tracey. 2009. Cholinergic control of inflammation. Journal of Internal Medicine 265 (6): 663–679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Qian, Y.S., Q.Y. Zhao, S.J. Zhang, Y.J. Zhang, Y.C. Wang, H.Y. Zhao, Z.X. Dai, Y.H. Tang, X. Wang, T. Wang, and C.X. Huang. 2018. Effect of α7nAChR mediated cholinergic anti-inflammatory pathway on inhibition of atrial fibrillation by low-level vagus nerve stimulation. Zhonghua Yi Xue Za Zhi 98 (11): 855–859.

    CAS  PubMed  Google Scholar 

  7. Jarczyk, J., B.A. Yard, and S. Hoeger. 2019. The cholinergic anti-inflammatory pathway as a conceptual framework to treat inflammation-mediated renal injury. Kidney & Blood Pressure Research 44 (4): 435–448.

    Article  CAS  Google Scholar 

  8. Li, Z., H. Hao, Y. Gao, Z. Wang, W. Lu, and J. Liu. 2019. Expression and localization analyses of the cholinergic anti-inflammatory pathway and α7nAchR in different tissues of rats with rheumatoid arthritis. Acta Histochemica 121 (6): 742–749.

    Article  CAS  PubMed  Google Scholar 

  9. Tracey, K.J. 2002. The inflammatory reflex. Nature 420 (6917): 853–859.

    Article  CAS  PubMed  Google Scholar 

  10. Borovikova, L.V., S. Ivanova, M. Zhang, H. Yang, G.I. Botchkina, L.R. Watkins, H. Wang, N. Abumrad, J.W. Eaton, and K.J. Tracey. 2000. Vagus nerve stimulation attenuates the systemic inflammatory response to endotoxin. Nature 405 (6785): 458–462.

    Article  CAS  PubMed  Google Scholar 

  11. van Westerloo, D.J., I.A. Giebelen, S. Florquin, J. Daalhuisen, M.J. Bruno, A.F. de Vos, K.J. Tracey, and T. van der Poll. 2005. The cholinergic anti-inflammatory pathway regulates the host response during septic peritonitis. The Journal of Infectious Diseases 191 (12): 2138–2148.

    Article  PubMed  Google Scholar 

  12. Ghia, J.E., P. Blennerhassett, and S.M. Collins. 2008. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. The Journal of Clinical Investigation 118 (6): 2209–2218.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Yeboah, M.M., X. Xue, B. Duan, M. Ochani, K.J. Tracey, M. Susin, and C.N. Metz. 2008. Cholinergic agonists attenuate renal ischemia-reperfusion injury in rats. Kidney International 74 (1): 62–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Rosas-Ballina, M., M. Ochani, W.R. Parrish, K. Ochani, Y.T. Harris, J.M. Huston, S. Chavan, and K.J. Tracey. 2008. Splenic nerve is required for cholinergic antiinflammatory pathway control of TNF in endotoxemia. Proceedings of the National Academy of Sciences of the United States of America 105 (31): 11008–11013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huston, J.M., M. Ochani, M. Rosas-Ballina, H. Liao, K. Ochani, V.A. Pavlov, M. Gallowitsch-Puerta, M. Ashok, C.J. Czura, B. Foxwell, K.J. Tracey, and L. Ulloa. 2006. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine 203 (7): 1623–1628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Revathikumar, P., J. Estelius, U. Karmakar, E. Le Maître, M. Korotkova, P.J. Jakobsson, and J. Lampa. 2018. Microsomal prostaglandin E synthase-1 gene deletion impairs neuro-immune circuitry of the cholinergic anti-inflammatory pathway in endotoxaemic mouse spleen. PLoS One 13 (2): e0193210.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Bellinger, D.L., S.Y. Felten, D. Lorton, and D.L. Felten. 1989. Origin of noradrenergic innervation of the spleen in rats. Brain, Behavior, and Immunity 3 (4): 291–311.

    Article  CAS  PubMed  Google Scholar 

  18. Bellinger, D.L., S.Y. Felten, T.J. Collier, and D.L. Felten. 1987. Noradrenergic sympathetic innervation of the spleen: IV. Morphometric analysis in adult and aged F344 rats. Journal of Neuroscience Research 18 (1): 55–63 126–129.

    Article  CAS  PubMed  Google Scholar 

  19. Martelli, D., M.J. McKinley, and R.M. McAllen. 2014. The cholinergic anti-inflammatory pathway: a critical review. Autonomic Neuroscience 182: 65–69.

    Article  CAS  PubMed  Google Scholar 

  20. Jensen, A.A., B. Frølund, T. Liljefors, and P. Krogsgaard-Larsen. 2005. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. Journal of Medicinal Chemistry 48 (15): 4705–4745.

    Article  CAS  PubMed  Google Scholar 

  21. Lukas, R.J., J.P. Changeux, N. Le Novère, E.X. Albuquerque, D.J. Balfour, D.K. Berg, D. Bertrand, V.A. Chiappinelli, P.B. Clarke, A.C. Collins, J.A. Dani, S.R. Grady, K.J. Kellar, J.M. Lindstrom, M.J. Marks, M. Quik, P.W. Taylor, and S. Wonnacott. 1999. International Union of Pharmacology. XX. Current status of the nomenclature for nicotinic acetylcholine receptors and their subunits. Pharmacological Reviews 51 (2): 397–401.

    CAS  PubMed  Google Scholar 

  22. Romanelli, M.N., and F. Gualtieri. 2003. Cholinergic nicotinic receptors: competitive ligands, allosteric modulators, and their potential applications. Medicinal Research Reviews 23 (4): 393–426.

    Article  CAS  PubMed  Google Scholar 

  23. Hurst, R., H. Rollema, and D. Bertrand. 2013. Nicotinic acetylcholine receptors: from basic science to therapeutics. Pharmacology & Therapeutics 137 (1): 22–54.

    Article  CAS  Google Scholar 

  24. Gault, J., M. Robinson, R. Berger, C. Drebing, J. Logel, J. Hopkins, T. Moore, S. Jacobs, J. Meriwether, M.J. Choi, E.J. Kim, K. Walton, K. Buiting, A. Davis, C. Breese, R. Freedman, and S. Leonard. 1998. Genomic organization and partial duplication of the human alpha7 neuronal nicotinic acetylcholine receptor gene (CHRNA7). Genomics 52 (2): 173–185.

    Article  CAS  PubMed  Google Scholar 

  25. Canastar, A., J. Logel, S. Graw, J. Finlay-Schultz, C. Osborne, M. Palionyte, C. Drebing, M. Plehaty, L. Wilson, R. Eyeson, and S. Leonard. 2012. Promoter methylation and tissue-specific transcription of the α7 nicotinic receptor gene, CHRNA7. Journal of Molecular Neuroscience 47 (2): 389–400.

    Article  CAS  PubMed  Google Scholar 

  26. Kombo, D.C., A.A. Mazurov, J. Chewning, P.S. Hammond, K. Tallapragada, T.A. Hauser, J. Speake, D. Yohannes, and W.S. Caldwell. 2012. Discovery of novel α7 nicotinic acetylcholine receptor ligands via pharmacophoric and docking studies of benzylidene anabaseine analogs. Bioorganic & Medicinal Chemistry Letters 22 (2): 1179–1186.

    Article  CAS  Google Scholar 

  27. Wang, H.Y., D.H. Lee, M.R. D'Andrea, P.A. Peterson, R.P. Shank, and A.B. Reitz. 2000. beta-Amyloid (1-42) binds to alpha7 nicotinic acetylcholine receptor with high affinity. Implications for Alzheimer’s disease pathology. The Journal of Biological Chemistry 275 (8): 5626–5632.

    Article  CAS  PubMed  Google Scholar 

  28. Burghaus, L., U. Schütz, U. Krempel, J. Lindstrom, and H. Schröder. 2003. Loss of nicotinic acetylcholine receptor subunits alpha4 and alpha7 in the cerebral cortex of Parkinson patients. Parkinsonism & Related Disorders 9 (5): 243–246.

    Article  Google Scholar 

  29. Wang, H., M. Yu, M. Ochani, C.A. Amella, M. Tanovic, S. Susarla, J.H. Li, H. Wang, H. Yang, L. Ulloa, Y. Al-Abed, C.J. Czura, and K.J. Tracey. 2003. Nicotinic acetylcholine receptor alpha7 subunit is an essential regulator of inflammation. Nature 421 (6921): 384–388.

    Article  CAS  PubMed  Google Scholar 

  30. Sinkus, M.L., S. Graw, R. Freedman, R.G. Ross, H.A. Lester, and S. Leonard. 2015. The human CHRNA7 and CHRFAM7A genes: a review of the genetics, regulation, and function. Neuropharmacology 96 (Pt B): 274–288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. John, D., I. Shelukhina, Y. Yanagawa, J. Deuchars, and Z. Henderson. 2015. Functional alpha7 nicotinic receptors are expressed on immature granule cells of the postnatal dentate gyrus. Brain Research 1601: 15–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Moretti, M., M. Zoli, A.A. George, R.J. Lukas, F. Pistillo, U. Maskos, P. Whiteaker, and C. Gotti. 2014. The novel α7β2-nicotinic acetylcholine receptor subtype is expressed in mouse and human basal forebrain: biochemical and pharmacological characterization. Molecular Pharmacology 86 (3): 306–317.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Qi, X.L., and Z.Z. Guan. 2008. Neuroprotective effects of alpha7 neuronal acetylcholine receptor and its roles in the pathogenesis of Alzheimer’s disease. Zhong hua Bing Li Xue Za Zhi 37 (1): 51–55.

    CAS  Google Scholar 

  34. Gotti, C., and F. Clementi. 2004. Neuronal nicotinic receptors: from structure to pathology. Progress in Neurobiology 74 (6): 363–396.

    Article  CAS  PubMed  Google Scholar 

  35. Chen, L.Y., Z.G. Liu, Y.H. Li, Y.Z. Feng, and J.R. Wang. 2008. Expression of neuronal acetylcholine receptor alpha 7 (nAChRalpha7) in peripheral blood CD(4)(+) T lymphocytes from asthmatic children. Zhong hua Jie He He Hu Xi Za Zhi 31 (11): 803–805.

    Google Scholar 

  36. Blanchet, M.R., E. Israël-Assayag, P. Daleau, M.J. Beaulieu, and Y. Cormier. 2006. Dimethyphenylpiperazinium, a nicotinic receptor agonist, downregulates inflammation in monocytes/macrophages through PI3K and PLC chronic activation. American Journal of Physiology. Lung Cellular and Molecular Physiology 291 (4): L757–L763.

    Article  CAS  PubMed  Google Scholar 

  37. Villiger, Y., I. Szanto, S. Jaconi, C. Blanchet, B. Buisson, K.H. Krause, D. Bertrand, and J.A. Romand. 2002. Expression of an alpha7 duplicate nicotinic acetylcholine receptor-related protein in human leukocytes. Journal of Neuroimmunology 126 (1–2): 86–98.

    Article  CAS  PubMed  Google Scholar 

  38. Sugano, N., K. Shimada, K. Ito, and S. Murai. 1998. Nicotine inhibits the production of inflammatory mediators in U937 cells through modulation of nuclear factor-kappaB activation. Biochemical and Biophysical Research Communications 252 (1): 25–28.

    Article  CAS  PubMed  Google Scholar 

  39. Rioux, N., and A. Castonguay. 2000. The induction of cyclooxygenase-1 by a tobacco carcinogen in U937 human macrophages is correlated to the activation of NF-kappaB. Carcinogenesis 21 (9): 1745–1751.

    Article  CAS  PubMed  Google Scholar 

  40. Wang, H., H. Liao, M. Ochani, M. Justiniani, X. Lin, L. Yang, Y. Al-Abed, H. Wang, C. Metz, E.J. Miller, K.J. Tracey, and L. Ulloa. 2004. Cholinergic agonists inhibit HMGB1 release and improve survival in experimental sepsis. Nature Medicine 10 (11): 1216–1221.

    Article  CAS  PubMed  Google Scholar 

  41. Saeed, R.W., S. Varma, T. Peng-Nemeroff, B. Sherry, D. Balakhaneh, J. Huston, K.J. Tracey, Y. Al-Abed, and C.N. Metz. 2005. Cholinergic stimulation blocks endothelial cell activation and leukocyte recruitment during inflammation. The Journal of Experimental Medicine 201 (7): 1113–11123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Tanaka, M., M.E. Fuentes, K. Yamaguchi, M.H. Durnin, S.A. Dalrymple, K.L. Hardy, and D.V. Goeddel. 1999. Embryonic lethality, liver degeneration, and impaired NF-kappa B activation in IKK-beta-deficient mice. Immunity 10 (4): 421–429.

    Article  CAS  PubMed  Google Scholar 

  43. van Maanen, M.A., M.C. Lebre, T. van der Poll, G.J. LaRosa, D. Elbaum, M.J. Vervoordeldonk, and P.P. Tak. 2009. Stimulation of nicotinic acetylcholine receptors attenuates collagen-induced arthritis in mice. Arthritis and Rheumatism 60 (1): 114–122.

    Article  PubMed  Google Scholar 

  44. Navarro, E., I. Buendia, E. Parada, R. Leon, P. Jansen-Duerr, H. Pircher, J. Egea, and M.G. Lopez. 2015. Alpha7 nicotinic receptor activation protects against oxidative stress via heme-oxygenase I induction. Biochemical Pharmacology 97 (4): 473–481.

    Article  CAS  PubMed  Google Scholar 

  45. Patel, H., J. McIntire, S. Ryan, A. Dunah, and R. Loring. 2017. Anti-inflammatory effects of astroglial α7 nicotinic acetylcholine receptors are mediated by inhibition of the NF-κB pathway and activation of the Nrf2 pathway. Journal of Neuroinflammation 14 (1): 192.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Rojo, A.I., G. McBean, M. Cindric, J. Egea, M.G. López, P. Rada, N. Zarkovic, and A. Cuadrado. 2014. Redox control of microglial function: molecular mechanisms and functional significance. Antioxidants & Redox Signaling 21 (12): 1766–1801.

    Article  CAS  Google Scholar 

  47. de Jonge, W.J., E.P. van der Zanden, F.O. The, M.F. Bijlsma, D.J. van Westerloo, R.J. Bennink, H.R. Berthoud, S. Uematsu, S. Akira, R.M. van den Wijngaard, and G.E. Boeckxstaens. 2005. Stimulation of the vagus nerve attenuates macrophage activation by activating the Jak2-STAT3 signaling pathway. Nature Immunology 6 (8): 844–851.

    Article  PubMed  Google Scholar 

  48. Maldifassi, M.C., G. Atienza, F. Arnalich, E. López-Collazo, J.L. Cedillo, C. Martín-Sánchez, A. Bordas, J. Renart, and C. Montiel. 2014. A new IRAK-M-mediated mechanism implicated in the anti-inflammatory effect of nicotine via α7 nicotinic receptors in human macrophages. PLoS One 9 (9): e108397.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Park, S.Y., Y.H. Baik, J.H. Cho, S. Kim, K.S. Lee, and J.S. Han. 2008. Inhibition of lipopolysaccharide-induced nitric oxide synthesis by nicotine through S6K1-p42/44 MAPK pathway and STAT3 (Ser 727) phosphorylation in Raw 264.7 cells. Cytokine 44 (1): 126–134.

    Article  CAS  PubMed  Google Scholar 

  50. Sun, Y., Q. Li, H. Gui, D.P. Xu, Y.L. Yang, D.F. Su, and X. Liu. 2013. MicroRNA-124 mediates the cholinergic anti-inflammatory action through inhibiting the production of pro-inflammatory cytokines. Cell Research 23 (11): 1270–1283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ulloa, L., J. Doody, and J. Massagué. 1999. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature 397 (6721): 710–713.

    Article  CAS  PubMed  Google Scholar 

  52. Jenkins, B.J., D. Grail, T. Nheu, M. Najdovska, B. Wang, P. Waring, M. Inglese, R.M. McLoughlin, S.A. Jones, N. Topley, H. Baumann, L.M. Judd, A.S. Giraud, A. Boussioutas, H.J. Zhu, and M. Ernst. 2005. Hyperactivation of Stat3 in gp130 mutant mice promotes gastric hyperproliferation and desensitizes TGF-beta signaling. Nature Medicine 11 (8): 845–852.

    Article  CAS  PubMed  Google Scholar 

  53. Yu, Z., W. Zhang, and B.C. Kone. 2002. Signal transducers and activators of transcription 3 (STAT3) inhibits transcription of the inducible nitric oxide synthase gene by interacting with nuclear factor kappaB. The Biochemical Journal 367 (Pt 1): 97–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Yu, Z., and B.C. Kone. 2004. The STAT3 DNA-binding domain mediates interaction with NF-kappaB p65 and inducible nitric oxide synthase transrepression in mesangial cells. Journals of the American Society of Nephrology 15 (3): 585–591.

    Article  CAS  Google Scholar 

  55. Hoentjen, F., R.B. Sartor, M. Ozaki, and C. Jobin. 2005. STAT3 regulates NF-kappaB recruitment to the IL-12p40 promoter in dendritic cells. Blood 105 (2): 689–696.

    Article  CAS  PubMed  Google Scholar 

  56. Arredondo, J., A.I. Chernyavsky, D.L. Jolkovsky, K.E. Pinkerton, and S.A. Grando. 2006. Receptor-mediated tobacco toxicity: cooperation of the Ras/Raf-1/MEK1/ERK and JAK-2/STAT-3 pathways downstream of alpha7 nicotinic receptor in oral keratinocytes. The FASEB Journal 20 (12): 2093–2101.

    Article  CAS  PubMed  Google Scholar 

  57. Hamano, R., H.K. Takahashi, H. Iwagaki, T. Yoshino, M. Nishibori, and N. Tanaka. 2006. Stimulation of alpha7 nicotinic acetylcholine receptor inhibits CD14 and the toll-like receptor 4 expression in human monocytes. Shock 26 (4): 358–364.

    Article  CAS  PubMed  Google Scholar 

  58. Heeschen, C., J.J. Jang, M. Weis, A. Pathak, S. Kaji, R.S. Hu, P.S. Tsao, F.L. Johnson, and J.P. Cooke. 2001. Nicotine stimulates angiogenesis and promotes tumor growth and atherosclerosis. Nature Medicine 7 (7): 833–839.

    Article  CAS  PubMed  Google Scholar 

  59. Takahashi, H.K., H. Iwagaki, R. Hamano, T. Yoshino, N. Tanaka, and M. Nishibori. 2006. alpha7 Nicotinic acetylcholine receptor stimulation inhibits lipopolysaccharide-induced interleukin-18 and -12 production in monocytes. Journal of Pharmacological Sciences 102 (1): 143–146.

    Article  CAS  PubMed  Google Scholar 

  60. Zabrodskiĭ, P.F. 1987. Effect of armin on nonspecific resistance factors of the body and on the primary humoral immune response. Farmakologiia i Toksikologiia 50 (1): 57–60.

    PubMed  Google Scholar 

  61. Cope, A.P., H. Schulze-Koops, and M. Aringer. 2007. The central role of T cells in rheumatoid arthritis. Clinical and Experimental Rheumatology 25 (5 Suppl 46): S4–S11.

    CAS  PubMed  Google Scholar 

  62. Mellado, M., L. Martínez-Muñoz, G. Cascio, P. Lucas, J.L. Pablos, and J.M. Rodríguez-Frade. 2015. T Cell Migration in Rheumatoid Arthritis. Frontiers in Immunology 6: 384.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Schwaneck, E.C., R. Renner, L. Junker, H.P. Tony, S. Kleinert, M. Gernert, M. Schmalzing, and O. Gadeholt. 2020. T cells, natural killer cells, and γδT cells in a large patient cohort with rheumatoid arthritis: influence of age and anti-rheumatic therapy. Scandinavian Journal of Rheumatology 49 (1): 8–12.

    Article  CAS  PubMed  Google Scholar 

  64. Nizri, E., Y. Hamra-Amitay, C. Sicsic, I. Lavon, and T. Brenner. 2006. Anti-inflammatory properties of cholinergic up-regulation: a new role for acetylcholinesterase inhibitors. Neuropharmacology 50 (5): 540–547.

    Article  CAS  PubMed  Google Scholar 

  65. Nizri, E., M. Irony-Tur-Sinai, N. Faranesh, I. Lavon, E. Lavi, M. Weinstock, and T. Brenner. 2008. Suppression of neuroinflammation and immunomodulation by the acetylcholinesterase inhibitor rivastigmine. Journal of Neuroimmunology 203 (1): 12–22.

    Article  CAS  PubMed  Google Scholar 

  66. Nizri, E., M. Irony-Tur-Sinai, O. Lory, A. Orr-Urtreger, E. Lavi, and T. Brenner. 2009. Activation of the cholinergic anti-inflammatory system by nicotine attenuates neuroinflammation via suppression of Th1 and Th17 responses. Journal of Immunology 183 (10): 6681–6688.

    Article  CAS  Google Scholar 

  67. Nizri, E., M. Irony-Tur-Sinai, I. Lavon, H. Meshulam, G. Amitai, and T. Brenner. 2007. IBU-octyl-cytisine, a novel bifunctional compound eliciting anti-inflammatory and cholinergic activity, ameliorates CNS inflammation by inhibition of T-cell activity. International Immunopharmacology 7 (9): 1129–1139.

    Article  CAS  PubMed  Google Scholar 

  68. Tjiu, J.W., P.J. Lin, W.H. Wu, Y.P. Cheng, H.C. Chiu, H.Y. Thong, B.L. Chiang, W.S. Yang, and S.H. Jee. 2011. SLURP1 mutation-impaired T-cell activation in a family with mal de Meleda. The British Journal of Dermatology 164 (1): 47–53.

    Article  CAS  PubMed  Google Scholar 

  69. Lina, C., W. Conghua, L. Nan, and Z. Ping. 2011. Combined treatment of etanercept and MTX reverses Th1/Th2, Th17/Treg imbalance in patients with rheumatoid arthritis. Journal of Clinical Immunology 31 (4): 596–605.

    Article  PubMed  Google Scholar 

  70. Talaat, R.M., S.F. Mohamed, I.H. Bassyouni, and A.A. Raouf. 2015. Th1/Th2/Th17/Treg cytokine imbalance in systemic lupus erythematosus (SLE) patients: correlation with disease activity. Cytokine 72 (2): 146–153.

    Article  CAS  PubMed  Google Scholar 

  71. Astry, B., S.H. Venkatesha, and K.D. Moudgil. 2015. Involvement of the IL-23/IL-17 axis and the Th17/Treg balance in the pathogenesis and control of autoimmune arthritis. Cytokine 74 (1): 54–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Galitovskiy, V., J. Qian, A.I. Chernyavsky, S. Marchenko, V. Gindi, R.A. Edwards, and S.A. Grando. 2011. Cytokine-induced alterations of α7 nicotinic receptor in colonic CD4 T cells mediate dichotomous response to nicotine in murine models of Th1/Th17- versus Th2-mediated colitis. Journal of Immunology 187 (5): 2677–2687.

    Article  CAS  Google Scholar 

  73. Gowayed, M.A., K. Rothe, M. Rossol, A.S. Attia, U. Wagner, C. Baerwald, H.S. El-Abhar, and R. Refaat. 2019. The role of α7nAChR in controlling the anti-inflammatory/anti-arthritic action of galantamine. Biochemical Pharmacology 170: 113665.

    Article  CAS  PubMed  Google Scholar 

  74. Munyaka, P., M.F. Rabbi, V.A. Pavlov, K.J. Tracey, E. Khafipour, and J.E. Ghia. 2014. Central muscarinic cholinergic activation alters interaction between splenic dendritic cell and CD4+CD25- T cells in experimental colitis. PLoS One 9 (10): e109272.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ren, C., X.H. Li, S.B. Wang, L.X. Wang, N. Dong, Y. Wu, and Y.M. Yao. 2018. Activation of central alpha 7 nicotinic acetylcholine receptor reverses suppressed immune function of T lymphocytes and protects against sepsis lethality. International Journal of Biological Sciences 14 (7): 748–759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Wu, S., H. Zhao, H. Luo, X. Xiao, H. Zhang, T. Li, and X. Zuo. 2014. GTS-21, an α7-nicotinic acetylcholine receptor agonist, modulates Th1 differentiation in CD4(+) T cells from patients with rheumatoid arthritis. Experimental and Therapeutic Medicine 8 (2): 557–562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Kondo, M. 2010. Lymphoid and myeloid lineage commitment in multipotent hematopoietic progenitors. Immunological Reviews 238 (1): 37–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Kambayashi, T., and T.M. Laufer. 2014. Atypical MHC class II-expressing antigen-presenting cells: can anything replace a dendritic cell? Nature Reviews. Immunology 14 (11): 719–730.

    Article  CAS  PubMed  Google Scholar 

  79. Fields, M.L., and J. Erikson. 2003. The regulation of lupus-associated autoantibodies: immunoglobulin transgenic models. Current Opinion in Immunology 15 (6): 709–717.

    Article  CAS  PubMed  Google Scholar 

  80. Hasan, M., G. Lopez-Herrera, K.E. Blomberg, J.M. Lindvall, A. Berglöf, C.I. Smith, and L. Vargas. 2008. Defective Toll-like receptor 9-mediated cytokine production in B cells from Bruton’s tyrosine kinase-deficient mice. Immunology 123 (2): 239–249.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kawashima, K., and T. Fujii. 2004. Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Frontiers in Bioscience 9: 2063–2085.

    Article  CAS  PubMed  Google Scholar 

  82. Kimura, R., N. Ushiyama, T. Fujii, and K. Kawashima. 2003. Nicotine-induced Ca2+ signaling and down-regulation of nicotinic acetylcholine receptor subunit expression in the CEM human leukemic T-cell line. Life Sciences 72 (18–19): 2155–2158.

    Article  CAS  PubMed  Google Scholar 

  83. Skok, M., R. Grailhe, F. Agenes, and J.P. Changeux. 2006. The role of nicotinic acetylcholine receptors in lymphocyte development. Journal of Neuroimmunology 171 (1–2): 86–98.

    Article  CAS  PubMed  Google Scholar 

  84. Nizri, E., and T. Brenner. 2013. Modulation of inflammatory pathways by the immune cholinergic system. Amino Acids 45 (1): 73–85.

    Article  CAS  PubMed  Google Scholar 

  85. Skok, M.V., E.N. Kalashnik, L.N. Koval, V.I. Tsetlin, Y.N. Utkin, J.P. Changeux, and R. Grailhe. 2003. Functional nicotinic acetylcholine receptors are expressed in B lymphocyte-derived cell lines. Molecular Pharmacology 64 (4): 885–889.

    Article  CAS  PubMed  Google Scholar 

  86. Koval, L.M., O. Yu Lykhmus, D.M. Omelchenko, S.V. Komisarenko, and M.V. Skok. 2009. The role of alpha7 nicotinic acetylcholine receptors in B lymphocyte activation. Ukr Biokhim Zh (1999) 81 (4): 5–11.

    CAS  Google Scholar 

  87. Quezada, S.A., L.Z. Jarvinen, E.F. Lind, and R.J. Noelle. 2004. CD40/CD154 interactions at the interface of tolerance and immunity. Annual Review of Immunology 22: 307–328.

    Article  CAS  PubMed  Google Scholar 

  88. Hecker, A., Z. Mikulski, K.S. Lips, U. Pfeil, A. Zakrzewicz, S. Wilker, P. Hartmann, W. Padberg, I. Wessler, W. Kummer, and V. Grau. 2009. Pivotal Advance: Up-regulation of acetylcholine synthesis and paracrine cholinergic signaling in intravascular transplant leukocytes during rejection of rat renal allografts. Journal of Leukocyte Biology 86 (1): 13–22.

    Article  CAS  PubMed  Google Scholar 

  89. Skok, M., R. Grailhe, and J.P. Changeux. 2005. Nicotinic receptors regulate B lymphocyte activation and immune response. European Journal of Pharmacology 517 (3): 246–251.

    Article  CAS  PubMed  Google Scholar 

  90. Fujii, Y.X., H. Fujigaya, Y. Moriwaki, H. Misawa, T. Kasahara, S.A. Grando, and K. Kawashima. 2007. Enhanced serum antigen-specific IgG1 and proinflammatory cytokine production in nicotinic acetylcholine receptor alpha7 subunit gene knockout mice. Journal of Neuroimmunology 189 (1–2): 69–74.

    Article  CAS  PubMed  Google Scholar 

  91. Gordon, S., and P.R. Taylor. 2005. Monocyte and macrophage heterogeneity. Nature Reviews Immunology 5 (12): 953–964.

    Article  CAS  PubMed  Google Scholar 

  92. Ouchi, N., S. Kihara, T. Funahashi, Y. Matsuzawa, and K. Walsh. 2003. Obesity, adiponectin and vascular inflammatory disease. Current Opinion in Lipidology 14 (6): 561–566.

    Article  CAS  PubMed  Google Scholar 

  93. Tobias, P., and L.K. Curtiss. 2005. Thematic review series: the immune system and atherogenesis. Paying the price for pathogen protection: toll receptors in atherogenesis. Journal of Lipid Research 46 (3): 404–411.

    Article  CAS  PubMed  Google Scholar 

  94. Zhang, L., and C.C. Wang. 2014. Inflammatory response of macrophages in infection. Hepatobiliary & Pancreatic Diseases International 13 (2): 138–152.

    Article  CAS  Google Scholar 

  95. Kong, X., and J. Gao. 2017. Macrophage polarization: a key event in the secondary phase of acute spinal cord injury. Journal of Cellular and Molecular Medicine 21 (5): 941–954.

    Article  PubMed  Google Scholar 

  96. Ambarus, C.A., T. Noordenbos, M.J. de Hair, P.P. Tak, and D.L. Baeten. 2012. Intimal lining layer macrophages but not synovial sublining macrophages display an IL-10 polarized-like phenotype in chronic synovitis. Arthritis Research and Therapy 14 (2): R74.

    Article  CAS  PubMed  Google Scholar 

  97. Lv, Y., S. Hu, J. Lu, N. Dong, Q. Liu, M. Du, and H. Zhang. 2014. Upregulating nonneuronal cholinergic activity decreases TNF release from lipopolysaccharide-stimulated RAW264.7 cells. Mediators of Inflammation 2014: 873728.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Chernyavsky, A.I., J. Arredondo, M. Skok, and S.A. Grando. 2010. Auto/paracrine control of inflammatory cytokines by acetylcholine in macrophage-like U937 cells through nicotinic receptors. International Immunopharmacology 10 (3): 308–315.

    Article  CAS  PubMed  Google Scholar 

  99. Rosas-Ballina, M., R.S. Goldstein, M. Gallowitsch-Puerta, L. Yang, S.I. Valdés-Ferrer, N.B. Patel, S. Chavan, Y. Al-Abed, H. Yang, and K.J. Tracey. 2009. The selective alpha7 agonist GTS-21 attenuates cytokine production in human whole blood and human monocytes activated by ligands for TLR2, TLR3, TLR4, TLR9, and RAGE. Molecular Medicine 15 (7–8): 195–202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Lotze, M.T., and K.J. Tracey. 2005. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews Immunology 5 (4): 331–342.

    Article  CAS  PubMed  Google Scholar 

  101. Ulleryd, M.A., F. Mjörnstedt, D. Panagaki, L.J. Yang, K. Engevall, S. Gutiérrez, Y. Wang, L.M. Gan, H. Nilsson, E. Michaëlsson, and M.E. Johansson. 2019. Stimulation of alpha 7 nicotinic acetylcholine receptor (α7nAChR) inhibits atherosclerosis via immunomodulatory effects on myeloid cells. Atherosclerosis 287: 122–133.

    Article  CAS  PubMed  Google Scholar 

  102. van der Zanden, E.P., S.A. Snoek, S.E. Heinsbroek, O.I. Stanisor, C. Verseijden, G.E. Boeckxstaens, M.P. Peppelenbosch, D.R. Greaves, S. Gordon, and W.J. De Jonge. 2009. Vagus nerve activity augments intestinal macrophage phagocytosis via nicotinic acetylcholine receptor alpha4beta2. Gastroenterology 137 (3): 1029–1039 e10394.

    Article  PubMed  Google Scholar 

  103. Pinheiro, N.M., F.P. Santana, R.R. Almeida, M. Guerreiro, M.A. Martins, L.C. Caperuto, N.O. Câmara, L.A. Wensing, V.F. Prado, I.F. Tibério, M.A. Prado, and C.M. Prado. 2017. Acute lung injury is reduced by the α7nAChR agonist PNU-282987 through changes in the macrophage profile. The FASEB Journal 31 (1): 320–332.

    Article  PubMed  Google Scholar 

  104. Wang, J., R. Li, Z. Peng, W. Zhou, B. Hu, X. Rao, X. Yang, and J. Li. 2019. GTS-21 reduces inflammation in acute lung injury by regulating M1 polarization and function of alveolar macrophages. Shock 51 (3): 389–400.

    Article  CAS  PubMed  Google Scholar 

  105. Wilund, K.R., M. Rosenblat, H.R. Chung, N. Volkova, M. Kaplan, J.A. Woods, and M. Aviram. 2009. Macrophages from alpha 7 nicotinic acetylcholine receptor knockout mice demonstrate increased cholesterol accumulation and decreased cellular paraoxonase expression: a possible link between the nervous system and atherosclerosis development. Biochemical and Biophysical Research Communications 390 (1): 148–154.

    Article  CAS  PubMed  Google Scholar 

  106. Inoue, T., C. Abe, T. Kohro, S. Tanaka, L. Huang, J. Yao, S. Zheng, H. Ye, R. Inagi, R.L. Stornetta, D.L. Rosin, M. Nangaku, Y. Wada, and M.D. Okusa. 2019. Non-canonical cholinergic anti-inflammatory pathway-mediated activation of peritoneal macrophages induces Hes1 and blocks ischemia/reperfusion injury in the kidney. Kidney International 95 (3): 563–576.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Lin, W., T. Liu, B. Wang, and H. Bi. 2019. The role of ocular dendritic cells in uveitis. Immunology Letters 209: 4–10.

    Article  CAS  PubMed  Google Scholar 

  108. Chudnovskiy, A., G. Pasqual, and G.D. Victora. 2019. Studying interactions between dendritic cells and T cells in vivo. Current Opinion in Immunology 58: 24–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Ganguly, D., S. Haak, V. Sisirak, and B. Reizis. 2013. The role of dendritic cells in autoimmunity. Nature Reviews Immunology 13 (8): 566–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Aicher, A., C. Heeschen, M. Mohaupt, J.P. Cooke, A.M. Zeiher, and S. Dimmeler. 2003. Nicotine strongly activates dendritic cell-mediated adaptive immunity: potential role for progression of atherosclerotic lesions. Circulation 107 (4): 604–611.

    Article  CAS  PubMed  Google Scholar 

  111. Nouri-Shirazi, M., and E. Guinet. 2003. Evidence for the immunosuppressive role of nicotine on human dendritic cell functions. Immunology 109 (3): 365–373.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Guinet, E., K. Yoshida, and M. Nouri-Shirazi. 2004. Nicotinic environment affects the differentiation and functional maturation of monocytes derived dendritic cells (DCs). Immunology Letters 95 (1): 45–55.

    Article  CAS  PubMed  Google Scholar 

  113. Yanagita, M., K. Mori, R. Kobayashi, Y. Kojima, M. Kubota, K. Miki, S. Yamada, M. Kitamura, and S. Murakami. 2012. Immunomodulation of dendritic cells differentiated in the presence of nicotine with lipopolysaccharide from Porphyromonas gingivalis. European Journal of Oral Sciences 120 (5): 408–414.

    Article  CAS  PubMed  Google Scholar 

  114. Gori, S., M. Vermeulen, F. Remes-Lenicov, C. Jancic, W. Scordo, A. Ceballos, N. Towstyka, Y. Bestach, C. Belli, and F. Sabbione. 2017. Acetylcholine polarizes dendritic cells toward a Th2-promoting profile. Allergy 72 (2): 221–231.

    Article  CAS  PubMed  Google Scholar 

  115. Seyler, L.E., J. Fertig, O. Pomerleau, D. Hunt, and K. Parker. 1984. The effects of smoking on ACTH and cortisol secretion. Life Sciences 34 (1): 57–65.

    Article  CAS  PubMed  Google Scholar 

  116. Michell-Robinson, M.A., H. Touil, L.M. Healy, D.R. Owen, B.A. Durafourt, A. Bar-Or, J.P. Antel, and C.S. Moore. 2015. Roles of microglia in brain development, tissue maintenance and repair. Brain 138 (Pt 5): 1138–1159.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Shytle, R.D., T. Mori, K. Townsend, M. Vendrame, N. Sun, J. Zeng, J. Ehrhart, A.A. Silver, P.R. Sanberg, and J. Tan. 2004. Cholinergic modulation of microglial activation by alpha 7 nicotinic receptors. Journal of Neurochemistry 89 (2): 337–343.

    Article  CAS  PubMed  Google Scholar 

  118. Tsuda, M. 2018. Modulation of pain and itch by spinal glia. Neuroscience Bulletin 34 (1): 178–185.

    Article  PubMed  Google Scholar 

  119. Suzuki, T., I. Hide, A. Matsubara, C. Hama, K. Harada, K. Miyano, M. Andrä, H. Matsubayashi, N. Sakai, S. Kohsaka, K. Inoue, and Y. Nakata. 2006. Microglial alpha7 nicotinic acetylcholine receptors drive a phospholipase C/IP3 pathway and modulate the cell activation toward a neuroprotective role. Journal of Neuroscience Research 83 (8): 1461–1470.

    Article  CAS  PubMed  Google Scholar 

  120. Polazzi, E., and B. Monti. 2010. Microglia and neuroprotection: from in vitro studies to therapeutic applications. Progress in Neurobiology 92 (3): 293–315.

    Article  PubMed  Google Scholar 

  121. Zhang, J., and S. Rivest. 2001. Anti-inflammatory effects of prostaglandin E2 in the central nervous system in response to brain injury and circulating lipopolysaccharide. Journal of Neurochemistry 76 (3): 855–864.

    Article  CAS  PubMed  Google Scholar 

  122. Egea, J., I. Buendia, E. Parada, E. Navarro, R. León, and M.G. Lopez. 2015. Anti-inflammatory role of microglial alpha7 nAChRs and its role in neuroprotection. Biochemical Pharmacology 97 (4): 463–472.

    Article  CAS  PubMed  Google Scholar 

  123. Noda, M., and A.I. Kobayashi. 2017. Nicotine inhibits activation of microglial proton currents via interactions with α7 acetylcholine receptors. The Journal of Physiological Sciences 67 (1): 235–245.

    Article  CAS  PubMed  Google Scholar 

  124. Morioka, N., S. Harano, M. Tokuhara, Y. Idenoshita, F.F. Zhang, K. Hisaoka-Nakashima, and Y. Nakata. 2015. Stimulation of α7 nicotinic acetylcholine receptor regulates glutamate transporter GLAST via basic fibroblast growth factor production in cultured cortical microglia. Brain Research 1625: 111–120.

    Article  CAS  PubMed  Google Scholar 

  125. Parada, E., J. Egea, I. Buendia, P. Negredo, A.C. Cunha, S. Cardoso, M.P. Soares, and M.G. López. 2013. The microglial α7-acetylcholine nicotinic receptor is a key element in promoting neuroprotection by inducing heme oxygenase-1 via nuclear factor erythroid-2-related factor 2. Antioxidants and Redox Signaling 19 (11): 1135–1148.

    Article  CAS  PubMed  Google Scholar 

  126. Toyohara, J., and K. Hashimoto. 2010. α7 nicotinic receptor agonists: potential therapeutic drugs for treatment of cognitive impairments in schizophrenia and Alzheimer’s disease. Open Medicinal Chemistry Journal 4: 37–56.

    CAS  Google Scholar 

  127. Borovikova, L.V., S. Ivanova, D. Nardi, M. Zhang, H. Yang, M. Ombrellino, and K.J. Tracey. 2000. Role of vagus nerve signaling in CNI-1493-mediated suppression of acute inflammation. Autonomic Neuroscience 85 (1–3): 141–147.

    Article  CAS  PubMed  Google Scholar 

  128. Faghih, R., M. Gopalakrishnan, and C.A. Briggs. 2008. Allosteric modulators of the alpha7 nicotinic acetylcholine receptor. Journal of Medicinal Chemistry 51 (4): 701–712.

    Article  CAS  PubMed  Google Scholar 

  129. Bouzat, C., M. Lasala, B.E. Nielsen, J. Corradi, and M.D.C. Esandi. 2018. Molecular function of α7 nicotinic receptors as drug targets. The Journal of Physiology 596 (10): 1847–1861.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Not applicable.

Funding

This work was supported by the Key Project of Natural Science Foundation of Anhui Province for College Scholar (KJ2018A0249), Talent Cultivation and International Academic Visiting Project for College Scholar of Anhui Province (gxfxZD2016163), and National Natural Science Foundation of China (81973828).

Author information

Authors and Affiliations

Authors

Contributions

Y.W. drafted the manuscript. L.W. participated in the drafting. J.Z. conceived the idea and revised the manuscript. Both C.J. and S.G. are archival authors. Q.Y. reviewed the manuscript and polished the language.

Corresponding authors

Correspondence to Qin Yin or Jian Zuo.

Ethics declarations

Competing Interests

The authors declare that they have no conflict of interest.

Ethical Approval and Consent to Participate

Not applicable.

Consent for Publication

All the authors have reviewed the manuscript and approved the submission and possible publication in this journal.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Yj., Wang, L., Ji, Cf. et al. The Role of α7nAChR-Mediated Cholinergic Anti-inflammatory Pathway in Immune Cells. Inflammation 44, 821–834 (2021). https://doi.org/10.1007/s10753-020-01396-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-020-01396-6

KEY WORDS

Navigation