Skip to main content
Log in

The Signaling Pathways Regulating NLRP3 Inflammasome Activation

  • Review
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

The NLRP3 inflammasome is a multi-molecular complex that acts as a molecular platform to mediate caspase-1 activation, leading to IL-1β/IL-18 maturation and release in cells stimulated by various pathogen-associated molecular patterns (PAMPs) or damage-associated molecular patterns (DAMPs). This inflammasome plays an important role in the innate immunity as its activation can further promote the occurrence of inflammation, enhance the ability of host to remove pathogens, and thus facilitate the repair of injured tissues. But if the inflammasome activation is dysregulated, it will cause the development of various inflammatory diseases and metabolic disorders. Therefore, under normal conditions, the activation of inflammasome is tightly regulated by various positive and negative signaling pathways to respond to the stimuli without damaging the host itself while maintaining homeostasis. In this review, we summarize recent advances in the major signaling pathways (including TLRs, MAPK, mTOR, autophagy, PKA, AMPK, and IFNR) that regulate NLRP3 inflammasome activation, providing a brief view of the molecular network that regulates this inflammasome as a theoretical basis for therapeutic intervention of NLRP3 dysregulation-related diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

All data and materials can be freely obtained from the authors through correspondence.

References

  1. Kagan, J.C. 2012. Signaling organelles of the innate immune system. Cell 151: 1168–1178.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Patel, S. 2018. Danger-associated molecular patterns (DAMPs): the derivatives and triggers of inflammation. Current Allergy and Asthma Reports 18: 63.

    Article  PubMed  CAS  Google Scholar 

  3. Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature 449: 819–826.

    Article  CAS  PubMed  Google Scholar 

  4. Satoh, T., and S. Akira. 2016. Toll-like receptor signaling and its inducible proteins. Microbiology Spectrum 4. https://doi.org/10.1128/microbiolspec.MCHD-0040-2016.

  5. Xue, Y., D. Enosi Tuipulotu, W.H. Tan, C. Kay, and S.M. Man. 2019. Emerging activators and regulators of inflammasomes and pyroptosis. Trends in Immunology 40: 1035–1052.

    Article  CAS  PubMed  Google Scholar 

  6. Platnich, J.M., and D.A. Muruve. 2019. NOD-like receptors and inflammasomes: a review of their canonical and non-canonical signaling pathways. Archives of Biochemistry and Biophysics 670: 4–14.

    Article  CAS  PubMed  Google Scholar 

  7. Swanson, K.V., M. Deng, and J.P. Ting. 2019. The NLRP3 inflammasome: molecular activation and regulation to therapeutics. Nature Reviews. Immunology 19: 477–489.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Martinon, F., K. Burns, and J. Tschopp. 2002. The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Molecular Cell 10: 417–426.

    Article  CAS  PubMed  Google Scholar 

  9. Tweedell, R.E., and T.D. Kanneganti. 2020. Advances in inflammasome research: recent breakthroughs and future hurdles. Trends in Molecular Medicine 26: 969–971.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Place, D.E., and T.D. Kanneganti. 2018. Recent advances in inflammasome biology. Current Opinion in Immunology 50: 32–38.

    Article  CAS  PubMed  Google Scholar 

  11. Liu, L., and B. Sun. 2019. Neutrophil pyroptosis: new perspectives on sepsis. Cellular and Molecular Life Sciences: CMLS 76: 2031–2042.

    Article  CAS  PubMed  Google Scholar 

  12. Jorgensen, I., J.P. Lopez, S.A. Laufer, and E.A. Miao. 2016. IL-1β, IL-18, and eicosanoids promote neutrophil recruitment to pore-induced intracellular traps following pyroptosis. European Journal of Immunology 46: 2761–2766.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Christgen, S., and T.D. Kanneganti. 2020. Inflammasomes and the fine line between defense and disease. Current Opinion in Immunology 62: 39–44.

    Article  CAS  PubMed  Google Scholar 

  14. Guo, H., J.B. Callaway, and J.P. Ting. 2015. Inflammasomes: mechanism of action, role in disease, and therapeutics. Nature Medicine 21: 677–687.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Mortimer, L., F. Moreau, J.A. MacDonald, and K. Chadee. 2016. NLRP3 inflammasome inhibition is disrupted in a group of auto-inflammatory disease CAPS mutations. Nature Immunology 17: 1176–1186.

    Article  CAS  PubMed  Google Scholar 

  16. Kaneko, N., M. Kurata, T. Yamamoto, S. Morikawa, and J. Masumoto. 2019. The role of interleukin-1 in general pathology. Inflammation and Regeneration 39: 12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Pedraza-Alva, G., L. Pérez-Martínez, L. Valdez-Hernández, K.F. Meza-Sosa, and M. Ando-Kuri. 2015. Negative regulation of the inflammasome: keeping inflammation under control. Immunological Reviews 265: 231–257.

    Article  CAS  PubMed  Google Scholar 

  18. Rajamäki, K., M.I. Mäyränpää, A. Risco, J. Tuimala, K. Nurmi, A. Cuenda, K.K. Eklund, K. Öörni, and P.T. Kovanen. 2016. p38δ MAPK: A novel regulator of NLRP3 inflammasome activation with increased expression in coronary atherogenesis. Arteriosclerosis, Thrombosis, and Vascular Biology 36: 1937–1946.

    Article  PubMed  CAS  Google Scholar 

  19. Dai, J., C. Jiang, H. Chen, and Y. Chai. 2019. Rapamycin attenuates high glucose-induced inflammation through modulation of mTOR/NF-κB pathways in macrophages. Frontiers in Pharmacology 10: 1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Yang, F., Y. Qin, Y. Wang, S. Meng, H. Xian, H. Che, J. Lv, Y. Li, Y. Yu, Y. Bai, and L. Wang. 2019. Metformin inhibits the NLRP3 inflammasome via AMPK/mTOR-dependent effects in diabetic cardiomyopathy. International Journal of Biological Sciences 15: 1010–1019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Saitoh, T., and S. Akira. 2016. Regulation of inflammasomes by autophagy. The Journal of Allergy and Clinical Immunology 138: 28–36.

    Article  CAS  PubMed  Google Scholar 

  22. Labzin, L.I., M.A. Lauterbach, and E. Latz. 2016. Interferons and inflammasomes: cooperation and counterregulation in disease. The Journal of Allergy and Clinical Immunology 138: 37–46.

    Article  CAS  PubMed  Google Scholar 

  23. He, Y., H. Hara, and G. Núñez. 2016. Mechanism and regulation of NLRP3 inflammasome activation. Trends in Biochemical Sciences 41: 1012–1021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Xing, Y., X. Yao, H. Li, G. Xue, Q. Guo, G. Yang, L. An, Y. Zhang, and G. Meng. 2017. Cutting edge: TRAF6 mediates TLR/IL-1R signaling-induced nontranscriptional priming of the NLRP3 inflammasome. Journal of Immunology (Baltimore, Md. : 1950) 199: 1561–1566.

    Article  CAS  Google Scholar 

  25. Song, N., Z.S. Liu, W. Xue, Z.F. Bai, Q.Y. Wang, J. Dai, X. Liu, Y.J. Huang, H. Cai, X.Y. Zhan, Q.Y. Han, H. Wang, Y. Chen, H.Y. Li, A.L. Li, X.M. Zhang, T. Zhou, and T. Li. 2017. NLRP3 Phosphorylation is an essential priming event for inflammasome activation. Molecular Cell 68: 185–197.e186.

    Article  CAS  PubMed  Google Scholar 

  26. Guan, K., C. Wei, Z. Zheng, T. Song, F. Wu, Y. Zhang, Y. Cao, S. Ma, W. Chen, Q. Xu, W. Xia, J. Gu, X. He, and H. Zhong. 2015. MAVS promotes inflammasome activation by targeting ASC for K63-linked ubiquitination via the E3 ligase TRAF3. Journal of Immunology (Baltimore, Md. : 1950) 194: 4880–4890.

    Article  CAS  Google Scholar 

  27. Py, B.F., M.S. Kim, H. Vakifahmetoglu-Norberg, and J. Yuan. 2013. Deubiquitination of NLRP3 by BRCC3 critically regulates inflammasome activity. Molecular Cell 49: 331–338.

    Article  CAS  PubMed  Google Scholar 

  28. Lima, H., Jr., L.S. Jacobson, M.F. Goldberg, K. Chandran, F. Diaz-Griffero, M.P. Lisanti, and J. Brojatsch. 2013. Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle (Georgetown, Texas) 12: 1868–1878.

    Article  CAS  Google Scholar 

  29. Muñoz-Planillo, R., P. Kuffa, G. Martínez-Colón, B.L. Smith, T.M. Rajendiran, and G. Núñez. 2013. K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity 38: 1142–1153.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. He, Y., M.Y. Zeng, D. Yang, B. Motro, and G. Núñez. 2016. NEK7 is an essential mediator of NLRP3 activation downstream of potassium efflux. Nature 530: 354–357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Groß, C.J., R. Mishra, K.S. Schneider, G. Médard, J. Wettmarshausen, D.C. Dittlein, H. Shi, O. Gorka, P.A. Koenig, S. Fromm, G. Magnani, T. Ćiković, L. Hartjes, J. Smollich, A.A.B. Robertson, M.A. Cooper, M. Schmidt-Supprian, M. Schuster, K. Schroder, P. Broz, C. Traidl-Hoffmann, B. Beutler, B. Kuster, J. Ruland, S. Schneider, F. Perocchi, and O. Groß. 2016. K(+) Efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity 45: 761–773.

    Article  PubMed  CAS  Google Scholar 

  32. Rühl, S., and P. Broz. 2015. Caspase-11 activates a canonical NLRP3 inflammasome by promoting K(+) efflux. European Journal of Immunology 45: 2927–2936.

    Article  PubMed  CAS  Google Scholar 

  33. Meunier, E., M.S. Dick, R.F. Dreier, N. Schürmann, D. Kenzelmann Broz, S. Warming, M. Roose-Girma, D. Bumann, N. Kayagaki, K. Takeda, M. Yamamoto, and P. Broz. 2014. Caspase-11 activation requires lysis of pathogen-containing vacuoles by IFN-induced GTPases. Nature 509: 366–370.

    Article  CAS  PubMed  Google Scholar 

  34. Shi, J., Y. Zhao, Y. Wang, W. Gao, J. Ding, P. Li, L. Hu, and F. Shao. 2014. Inflammatory caspases are innate immune receptors for intracellular LPS. Nature 514: 187–192.

    Article  CAS  PubMed  Google Scholar 

  35. Gaidt, M.M., T.S. Ebert, D. Chauhan, T. Schmidt, J.L. Schmid-Burgk, F. Rapino, A.A. Robertson, M.A. Cooper, T. Graf, and V. Hornung. 2016. Human monocytes engage an alternative inflammasome pathway. Immunity 44: 833–846.

    Article  CAS  PubMed  Google Scholar 

  36. Gurung, P., P.K. Anand, R.K. Malireddi, L. Vande Walle, N. Van Opdenbosch, C.P. Dillon, R. Weinlich, D.R. Green, M. Lamkanfi, and T.D. Kanneganti. 2014. FADD and caspase-8 mediate priming and activation of the canonical and noncanonical Nlrp3 inflammasomes. Journal of Immunology (Baltimore, Md. : 1950) 192: 1835–1846.

    Article  CAS  Google Scholar 

  37. Chen, K.W., B. Demarco, R. Heilig, K. Shkarina, A. Boettcher, C.J. Farady, P. Pelczar, and P. Broz. 2019. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. The EMBO Journal 38: e101638.

  38. Zheng, M., R. Karki, P. Vogel, and T.D. Kanneganti. 2020. Caspase-6 is a key regulator of innate immunity, inflammasome activation, and host defense. Cell 181: 674–687.e613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Boucher, D., M. Monteleone, R.C. Coll, K.W. Chen, C.M. Ross, J.L. Teo, G.A. Gomez, C.L. Holley, D. Bierschenk, K.J. Stacey, A.S. Yap, J.S. Bezbradica, and K. Schroder. 2018. Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. The Journal of Experimental Medicine 215: 827–840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Chan, A.H., and K. Schroder. 2020. Inflammasome signaling and regulation of interleukin-1 family cytokines. The Journal of Experimental Medicine 217: e20190314.

  41. Wang, K., Q. Sun, X. Zhong, M. Zeng, H. Zeng, X. Shi, Z. Li, Y. Wang, Q. Zhao, F. Shao, and J. Ding. 2020. Structural mechanism for GSDMD targeting by autoprocessed caspases in pyroptosis. Cell 180: 941–955.e920.

    Article  CAS  PubMed  Google Scholar 

  42. Orning, P., E. Lien, and K.A. Fitzgerald. 2019. Gasdermins and their role in immunity and inflammation. The Journal of Experimental Medicine 216: 2453–2465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mulvihill, E., L. Sborgi, S.A. Mari, M. Pfreundschuh, S. Hiller, and D.J. Müller. 2018. Mechanism of membrane pore formation by human gasdermin-D. The EMBO Journal 37: e98321.

  44. Evavold, C.L., J. Ruan, Y. Tan, S. Xia, H. Wu, and J.C. Kagan. 2018. The pore-forming protein gasdermin D regulates interleukin-1 secretion from living macrophages. Immunity 48: 35–44.e36.

    Article  CAS  PubMed  Google Scholar 

  45. Rühl, S., K. Shkarina, B. Demarco, R. Heilig, J.C. Santos, and P. Broz. 2018. ESCRT-dependent membrane repair negatively regulates pyroptosis downstream of GSDMD activation. Science 362: 956–960.

  46. Sagulenko, V., S.J. Thygesen, D.P. Sester, A. Idris, J.A. Cridland, P.R. Vajjhala, T.L. Roberts, K. Schroder, J.E. Vince, J.M. Hill, J. Silke, and K.J. Stacey. 2013. AIM2 and NLRP3 inflammasomes activate both apoptotic and pyroptotic death pathways via ASC. Cell Death and Differentiation 20: 1149–1160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rogers, C., T. Fernandes-Alnemri, L. Mayes, D. Alnemri, G. Cingolani, and E.S. Alnemri. 2017. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nature Communications 8: 14128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Tsuchiya, K., S. Nakajima, S. Hosojima, D. Thi Nguyen, T. Hattori, T. Manh Le, O. Hori, M.R. Mahib, Y. Yamaguchi, M. Miura, T. Kinoshita, H. Kushiyama, M. Sakurai, T. Shiroishi, and T. Suda. 2019. Caspase-1 initiates apoptosis in the absence of gasdermin D. Nature Communications 10: 2091.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  49. Heilig, R., M. Dilucca, D. Boucher, K.W. Chen, D. Hancz, B. Demarco, K. Shkarina, and P. Broz. 2020. Caspase-1 cleaves Bid to release mitochondrial SMAC and drive secondary necrosis in the absence of GSDMD. Life Science Alliance 3: e202000735.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Kawai, T., and S. Akira. 2010. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nature Immunology 11: 373–384.

    Article  CAS  PubMed  Google Scholar 

  51. Kawai, T., and S. Akira. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity 34: 637–650.

    Article  CAS  PubMed  Google Scholar 

  52. Kang, L.L., D.M. Zhang, C.H. Ma, J.H. Zhang, K.K. Jia, J.H. Liu, R. Wang, and L.D. Kong. 2016. Cinnamaldehyde and allopurinol reduce fructose-induced cardiac inflammation and fibrosis by attenuating CD36-mediated TLR4/6-IRAK4/1 signaling to suppress NLRP3 inflammasome activation. Scientific Reports 6: 27460.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Su, Q., L. Li, Y. Sun, H. Yang, Z. Ye, and J. Zhao. 2018. Effects of the TLR4/Myd88/NF-κB signaling pathway on NLRP3 inflammasome in coronary microembolization-induced myocardial injury. Cellular Physiology and Biochemistry : International Journal of Experimental Cellular Physiology, Biochemistry, and Pharmacology 47: 1497–1508.

    Article  CAS  Google Scholar 

  54. Hu, X., Q. Chi, Q. Liu, D. Wang, Y. Zhang, and S. Li. 2019. Atmospheric H(2) S triggers immune damage by activating the TLR-7/MyD88/NF-κB pathway and NLRP3 inflammasome in broiler thymus. Chemosphere 237: 124427.

    Article  CAS  PubMed  Google Scholar 

  55. Juliana, C., T. Fernandes-Alnemri, S. Kang, A. Farias, F. Qin, and E.S. Alnemri. 2012. Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. The Journal of Biological Chemistry 287: 36617–36622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fernandes-Alnemri, T., S. Kang, C. Anderson, J. Sagara, K.A. Fitzgerald, and E.S. Alnemri. 2013. Cutting edge: TLR signaling licenses IRAK1 for rapid activation of the NLRP3 inflammasome. Journal of Immunology (Baltimore, Md. : 1950) 191: 3995–3999.

    Article  CAS  Google Scholar 

  57. Okada, M., A. Matsuzawa, A. Yoshimura, and H. Ichijo. 2014. The lysosome rupture-activated TAK1-JNK pathway regulates NLRP3 inflammasome activation. The Journal of Biological Chemistry 289: 32926–32936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Saxton, R.A., and D.M. Sabatini. 2017. mTOR signaling in growth, metabolism, and disease. Cell 168: 960–976.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Kim, J., and K.L. Guan. 2019. mTOR as a central hub of nutrient signalling and cell growth. Nature Cell Biology 21: 63–71.

    Article  CAS  PubMed  Google Scholar 

  60. Dhingra, R., H. Gang, Y. Wang, A.K. Biala, Y. Aviv, V. Margulets, A. Tee, and L.A. Kirshenbaum. 2013. Bidirectional regulation of nuclear factor-κB and mammalian target of rapamycin signaling functionally links Bnip3 gene repression and cell survival of ventricular myocytes. Circulation. Heart Failure 6: 335–343.

    Article  CAS  PubMed  Google Scholar 

  61. Temiz-Resitoglu, M., S.P. Kucukkavruk, D.S. Guden, P. Cecen, A.N. Sari, B. Tunctan, A. Gorur, L. Tamer-Gumus, C.K. Buharalioglu, K.U. Malik, and S. Sahan-Firat. 2017. Activation of mTOR/IκB-α/NF-κB pathway contributes to LPS-induced hypotension and inflammation in rats. European Journal of Pharmacology 802: 7–19.

    Article  CAS  PubMed  Google Scholar 

  62. Tannahill, G.M., A.M. Curtis, J. Adamik, E.M. Palsson-McDermott, A.F. McGettrick, G. Goel, C. Frezza, N.J. Bernard, B. Kelly, N.H. Foley, L. Zheng, A. Gardet, Z. Tong, S.S. Jany, S.C. Corr, M. Haneklaus, B.E. Caffrey, K. Pierce, S. Walmsley, F.C. Beasley, E. Cummins, V. Nizet, M. Whyte, C.T. Taylor, H. Lin, S.L. Masters, E. Gottlieb, V.P. Kelly, C. Clish, P.E. Auron, R.J. Xavier, and L.A. O'Neill. 2013. Succinate is an inflammatory signal that induces IL-1β through HIF-1α. Nature 496: 238–242.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Covarrubias, A.J., H.I. Aksoylar, and T. Horng. 2015. Control of macrophage metabolism and activation by mTOR and Akt signaling. Seminars in Immunology 27: 286–296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Woo, Y., H. Kim, K.C. Kim, J.A. Han, and Y.J. Jung. 2018. Tumor-secreted factors induce IL-1β maturation via the glucose-mediated synergistic axis of mTOR and NF-κB pathways in mouse macrophages. PLoS One 13: e0209653.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Li, X., X. Zhang, Y. Pan, G. Shi, J. Ren, H. Fan, H. Dou, and Y. Hou. 2018. mTOR regulates NLRP3 inflammasome activation via reactive oxygen species in murine lupus. Acta Biochimica et Biophysica Sinica 50: 888–896.

    Article  CAS  PubMed  Google Scholar 

  66. Choi, Y.J., K.M. Moon, K.W. Chung, J.W. Jeong, D. Park, D.H. Kim, B.P. Yu, and H.Y. Chung. 2016. The underlying mechanism of proinflammatory NF-κB activation by the mTORC2/Akt/IKKα pathway during skin aging. Oncotarget 7: 52685–52694.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sørensen, M.V., B. Saha, I.S. Jensen, P. Wu, N. Ayasse, C.E. Gleason, S.L. Svendsen, W.H. Wang, and D. Pearce. 2019. Potassium acts through mTOR to regulate its own secretion. JCI Insight 5: e126910.

  68. Chang, L., and M. Karin. 2001. Mammalian MAP kinase signalling cascades. Nature 410: 37–40.

    Article  CAS  PubMed  Google Scholar 

  69. Arthur, J.S., and S.C. Ley. 2013. Mitogen-activated protein kinases in innate immunity. Nature Reviews. Immunology 13: 679–692.

    Article  CAS  PubMed  Google Scholar 

  70. Rezatabar, S., A. Karimian, V. Rameshknia, H. Parsian, M. Majidinia, T.A. Kopi, A. Bishayee, A. Sadeghinia, M. Yousefi, M. Monirialamdari, and B. Yousefi. 2019. RAS/MAPK signaling functions in oxidative stress, DNA damage response and cancer progression. Journal of Cellular Physiology 234: 14951–14965.

    Article  CAS  Google Scholar 

  71. Morrison, D.K. 2012. MAP kinase pathways. Cold Spring Harbor Perspectives in Biology 4: a011254.

  72. Kovtun, Y., W.L. Chiu, G. Tena, and J. Sheen. 2000. Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proceedings of the National Academy of Sciences of the United States of America 97: 2940–2945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. McCubrey, J.A., M.M. Lahair, and R.A. Franklin. 2006. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxidants & Redox Signaling 8: 1775–1789.

    Article  CAS  Google Scholar 

  74. Wang, W., X.Q. Ding, T.T. Gu, L. Song, J.M. Li, Q.C. Xue, and L.D. Kong. 2015. Pterostilbene and allopurinol reduce fructose-induced podocyte oxidative stress and inflammation via microRNA-377. Free Radical Biology & Medicine 83: 214–226.

    Article  CAS  Google Scholar 

  75. Zhou, R., A. Tardivel, B. Thorens, I. Choi, and J. Tschopp. 2010. Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nature Immunology 11: 136–140.

    Article  CAS  PubMed  Google Scholar 

  76. Zhou, R., A.S. Yazdi, P. Menu, and J. Tschopp. 2011. A role for mitochondria in NLRP3 inflammasome activation. Nature 469: 221–225.

    Article  CAS  PubMed  Google Scholar 

  77. Park, Y.J., S.J. Yoon, H.W. Suh, D.O. Kim, J.R. Park, H. Jung, T.D. Kim, S.R. Yoon, J.K. Min, H.J. Na, S.J. Lee, H.G. Lee, Y.H. Lee, H.B. Lee, and I. Choi. 2013. TXNIP deficiency exacerbates endotoxic shock via the induction of excessive nitric oxide synthesis. PLoS Pathogens 9: e1003646.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Mishra, B.B., V.A. Rathinam, G.W. Martens, A.J. Martinot, H. Kornfeld, K.A. Fitzgerald, and C.M. Sassetti. 2013. Nitric oxide controls the immunopathology of tuberculosis by inhibiting NLRP3 inflammasome-dependent processing of IL-1β. Nature Immunology 14: 52–60.

    Article  CAS  PubMed  Google Scholar 

  79. Gan, P., Z. Gao, X. Zhao, and G. Qi. 2016. Surfactin inducing mitochondria-dependent ROS to activate MAPKs, NF-κB and inflammasomes in macrophages for adjuvant activity. Scientific Reports 6: 39303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Zhao, W., L. Ma, C. Cai, and X. Gong. 2019. Caffeine inhibits NLRP3 inflammasome activation by suppressing MAPK/NF-κB and A2aR signaling in LPS-induced THP-1 macrophages. International Journal of Biological sciences 15: 1571–1581.

  81. Shibutani, S.T., T. Saitoh, H. Nowag, C. Münz, and T. Yoshimori. 2015. Autophagy and autophagy-related proteins in the immune system. Nature Immunology 16: 1014–1024.

    Article  CAS  PubMed  Google Scholar 

  82. Levine, B., and G. Kroemer. 2019. Biological functions of autophagy genes: a disease perspective. Cell 176: 11–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Nguyen, H.T., P. Lapaquette, M.A. Bringer, and A. Darfeuille-Michaud. 2013. Autophagy and Crohn’s disease. Journal of Innate Immunity 5: 434–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Allison, S.J. 2016. Systemic lupus erythematosus: defective noncanonical autophagy in SLE-like disease. Nature Reviews. Nephrology 12: 375.

    Article  PubMed  Google Scholar 

  85. Spalinger, M.R., S. Lang, C. Gottier, X. Dai, D.J. Rawlings, A.C. Chan, G. Rogler, and M. Scharl. 2017. PTPN22 regulates NLRP3-mediated IL1B secretion in an autophagy-dependent manner. Autophagy 13: 1590–1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Saitoh, T., N. Fujita, M.H. Jang, S. Uematsu, B.G. Yang, T. Satoh, H. Omori, T. Noda, N. Yamamoto, M. Komatsu, K. Tanaka, T. Kawai, T. Tsujimura, O. Takeuchi, T. Yoshimori, and S. Akira. 2008. Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456: 264–268.

    Article  CAS  PubMed  Google Scholar 

  87. Lee, J., H.R. Kim, C. Quinley, J. Kim, J. Gonzalez-Navajas, R. Xavier, and E. Raz. 2012. Autophagy suppresses interleukin-1β (IL-1β) signaling by activation of p62 degradation via lysosomal and proteasomal pathways. The Journal of Biological Chemistry 287: 4033–4040.

    Article  CAS  PubMed  Google Scholar 

  88. Seveau, S., J. Turner, M.A. Gavrilin, J.B. Torrelles, L. Hall-Stoodley, J.S. Yount, and A.O. Amer. 2018. Checks and balances between autophagy and inflammasomes during infection. Journal of Molecular Biology 430: 174–192.

    Article  CAS  PubMed  Google Scholar 

  89. Lupfer, C., P.G. Thomas, P.K. Anand, P. Vogel, S. Milasta, J. Martinez, G. Huang, M. Green, M. Kundu, H. Chi, R.J. Xavier, D.R. Green, M. Lamkanfi, C.A. Dinarello, P.C. Doherty, and T.D. Kanneganti. 2013. Receptor interacting protein kinase 2-mediated mitophagy regulates inflammasome activation during virus infection. Nature Immunology 14: 480–488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. B'Chir, W., A.C. Maurin, V. Carraro, J. Averous, C. Jousse, Y. Muranishi, L. Parry, G. Stepien, P. Fafournoux, and A. Bruhat. 2013. The eIF2α/ATF4 pathway is essential for stress-induced autophagy gene expression. Nucleic Acids Research 41: 7683–7699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Chen, X., X. Guo, Q. Ge, Y. Zhao, H. Mu, and J. Zhang. 2019. ER stress activates the NLRP3 inflammasome: a novel mechanism of atherosclerosis. Oxidative Medicine and Cellular Longevity 2019: 3462530.

    PubMed  PubMed Central  Google Scholar 

  92. Shi, C.S., K. Shenderov, N.N. Huang, J. Kabat, M. Abu-Asab, K.A. Fitzgerald, A. Sher, and J.H. Kehrl. 2012. Activation of autophagy by inflammatory signals limits IL-1β production by targeting ubiquitinated inflammasomes for destruction. Nature Immunology 13: 255–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Chen, J., and Z.J. Chen. 2018. PtdIns4P on dispersed trans-Golgi network mediates NLRP3 inflammasome activation. Nature 564: 71–76.

    Article  CAS  PubMed  Google Scholar 

  94. Li, X., S. Thome, X. Ma, M. Amrute-Nayak, A. Finigan, L. Kitt, L. Masters, J.R. James, Y. Shi, G. Meng, and Z. Mallat. 2017. MARK4 regulates NLRP3 positioning and inflammasome activation through a microtubule-dependent mechanism. Nature Communications 8: 15986.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Li, C.G., Q.Z. Zeng, M.Y. Chen, L.H. Xu, C.C. Zhang, F.Y. Mai, C.Y. Zeng, X.H. He, and D.Y. Ouyang. 2019. Evodiamine augments nlrp3 inflammasome activation and anti-bacterial responses through inducing α-tubulin acetylation. Frontiers in Pharmacology 10: 290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Magupalli, V.G., R. Negro, Y. Tian, A.V. Hauenstein, G. Di Caprio, W. Skillern, Q. Deng, P. Orning, H.B. Alam, Z. Maliga, H. Sharif, J.J. Hu, C.L. Evavold, J.C. Kagan, F.I. Schmidt, K.A. Fitzgerald, T. Kirchhausen, Y. Li, and H. Wu. 2020. HDAC6 mediates an aggresome-like mechanism for NLRP3 and pyrin inflammasome activation. Science 369: eaas8995.

  97. Cao, Z., Y. Wang, Z. Long, and G. He. 2019. Interaction between autophagy and the NLRP3 inflammasome. Acta Biochimica et Biophysica Sinica 51: 1087–1095.

    Article  CAS  PubMed  Google Scholar 

  98. Misawa, T., M. Takahama, T. Kozaki, H. Lee, J. Zou, T. Saitoh, and S. Akira. 2013. Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nature Immunology 14: 454–460.

    Article  CAS  PubMed  Google Scholar 

  99. Brandwein, S.R. 1986. Regulation of interleukin 1 production by mouse peritoneal macrophages. Effects of arachidonic acid metabolites, cyclic nucleotides, and interferons. The Journal of Biological Chemistry 261: 8624–8632.

    Article  CAS  PubMed  Google Scholar 

  100. Taskén, K., and E.M. Aandahl. 2004. Localized effects of cAMP mediated by distinct routes of protein kinase A. Physiological Reviews 84: 137–167.

    Article  PubMed  Google Scholar 

  101. Sokolowska, M., L.Y. Chen, Y. Liu, A. Martinez-Anton, H.Y. Qi, C. Logun, S. Alsaaty, Y.H. Park, D.L. Kastner, J.J. Chae, and J.H. Shelhamer. 2015. Prostaglandin E2 inhibits NLRP3 inflammasome activation through EP4 receptor and intracellular cyclic AMP in human macrophages. Journal of Immunology (Baltimore, Md. : 1950) 194: 5472–5487.

    Article  CAS  Google Scholar 

  102. Yan, Y., W. Jiang, L. Liu, X. Wang, C. Ding, Z. Tian, and R. Zhou. 2015. Dopamine controls systemic inflammation through inhibition of NLRP3 inflammasome. Cell 160: 62–73.

    Article  CAS  PubMed  Google Scholar 

  103. Guo, C., S. Xie, Z. Chi, J. Zhang, Y. Liu, L. Zhang, M. Zheng, X. Zhang, D. Xia, Y. Ke, L. Lu, and D. Wang. 2016. Bile acids control inflammation and metabolic disorder through inhibition of NLRP3 inflammasome. Immunity 45: 802–816.

    Article  CAS  PubMed  Google Scholar 

  104. Liu, Y., Y.Y. Jing, C.Y. Zeng, C.G. Li, L.H. Xu, L. Yan, W.J. Bai, Q.B. Zha, D.Y. Ouyang, and X.H. He. 2017. Scutellarin suppresses NLRP3 inflammasome activation in macrophages and protects mice against bacterial sepsis. Frontiers in Pharmacology 8: 975.

    Article  PubMed  CAS  Google Scholar 

  105. Pan, H., Y. Lin, J. Dou, Z. Fu, Y. Yao, S. Ye, S. Zhang, N. Wang, A. Liu, X. Li, F. Zhang, and D. Chen. 2020. Wedelolactone facilitates Ser/Thr phosphorylation of NLRP3 dependent on PKA signalling to block inflammasome activation and pyroptosis. Cell Proliferation 53: e12868.

    CAS  PubMed  PubMed Central  Google Scholar 

  106. Ye J., B. Zeng, M. Zhong, H. Li, L. Xu, J. Shu, Y. Wang, F. Yang, C. Zhong, X. Ye, D. Ouyang, X. He. 2020. Scutellarin inhibits caspase-11 activation and pyroptosis in macrophages via regulating PKA signaling. Acta Pharmaceutica Sinica B 11: 112–126.

  107. Chen, R., L. Zeng, S. Zhu, J. Liu, H.J. Zeh, G. Kroemer, H. Wang, T.R. Billiar, J. Jiang, D. Tang, and R. Kang. 2019. cAMP metabolism controls caspase-11 inflammasome activation and pyroptosis in sepsis. Science Advances 5: eaav5562.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Ollivier, V., G.C. Parry, R.R. Cobb, D. de Prost, and N. Mackman. 1996. Elevated cyclic AMP inhibits NF-kappaB-mediated transcription in human monocytic cells and endothelial cells. The Journal of Biological Chemistry 271: 20828–20835.

    Article  CAS  PubMed  Google Scholar 

  109. Chen, B.C., C.C. Liao, M.J. Hsu, Y.T. Liao, C.C. Lin, J.R. Sheu, and C.H. Lin. 2006. Peptidoglycan-induced IL-6 production in RAW 264.7 macrophages is mediated by cyclooxygenase-2, PGE2/PGE4 receptors, protein kinase A, I kappa B kinase, and NF-kappa B. Journal of Immunology (Baltimore, Md. : 1950) 177: 681–693.

    Article  CAS  Google Scholar 

  110. Steinberg, G.R., and B.E. Kemp. 2009. AMPK in Health and Disease. Physiological Reviews 89: 1025–1078.

    Article  CAS  PubMed  Google Scholar 

  111. Hardie, D.G., F.A. Ross, and S.A. Hawley. 2012. AMPK: a nutrient and energy sensor that maintains energy homeostasis. Nature Reviews. Molecular Cell Biology 13: 251–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Sag, D., D. Carling, R.D. Stout, and J. Suttles. 2008. Adenosine 5'-monophosphate-activated protein kinase promotes macrophage polarization to an anti-inflammatory functional phenotype. Journal of Immunology (Baltimore, Md. : 1950) 181: 8633–8641.

    Article  CAS  Google Scholar 

  113. Ouslimani, N., J. Peynet, D. Bonnefont-Rousselot, P. Thérond, A. Legrand, and J.L. Beaudeux. 2005. Metformin decreases intracellular production of reactive oxygen species in aortic endothelial cells. Metabolism, Clinical and Experimental 54: 829–834.

    Article  CAS  Google Scholar 

  114. Wang, S., M. Zhang, B. Liang, J. Xu, Z. Xie, C. Liu, B. Viollet, D. Yan, and M.H. Zou. 2010. AMPKalpha2 deletion causes aberrant expression and activation of NAD(P) H oxidase and consequent endothelial dysfunction in vivo: role of 26S proteasomes. Circulation Research 106: 1117–1128.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Wen, H., D. Gris, Y. Lei, S. Jha, L. Zhang, M.T. Huang, W.J. Brickey, and J.P. Ting. 2011. Fatty acid-induced NLRP3-ASC inflammasome activation interferes with insulin signaling. Nature Immunology 12: 408–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Lv, H., Q. Liu, Z. Wen, H. Feng, X. Deng, and X. Ci. 2017. Xanthohumol ameliorates lipopolysaccharide (LPS)-induced acute lung injury via induction of AMPK/GSK3β-Nrf2 signal axis. Redox Biology 12: 311–324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Walters, D.M., H.Y. Cho, and S.R. Kleeberger. 2008. Oxidative stress and antioxidants in the pathogenesis of pulmonary fibrosis: a potential role for Nrf2. Antioxidants & Redox Signaling 10: 321–332.

    Article  CAS  Google Scholar 

  118. Zha, Q.B., H.X. Wei, C.G. Li, Y.D. Liang, L.H. Xu, W.J. Bai, H. Pan, X.H. He, and D.Y. Ouyang. 2016. ATP-induced inflammasome activation and pyroptosis is regulated by AMP-activated protein kinase in macrophages. Frontiers in Immunology 7: 597.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  119. Li, C.G., L. Yan, Y.Y. Jing, L.H. Xu, Y.D. Liang, H.X. Wei, B. Hu, H. Pan, Q.B. Zha, D.Y. Ouyang, and X.H. He. 2017. Berberine augments ATP-induced inflammasome activation in macrophages by enhancing AMPK signaling. Oncotarget 8: 95–109.

    Article  PubMed  Google Scholar 

  120. Sadler, A.J., and B.R. Williams. 2008. Interferon-inducible antiviral effectors. Nature Reviews. Immunology 8: 559–568.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Robb, R.J., and G.R. Hill. 2012. The interferon-dependent orchestration of innate and adaptive immunity after transplantation. Blood 119: 5351–5358.

    Article  CAS  PubMed  Google Scholar 

  122. Schneider, W.M., M.D. Chevillotte, and C.M. Rice. 2014. Interferon-stimulated genes: a complex web of host defenses. Annual Review of Immunology 32: 513–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. McNab, F., K. Mayer-Barber, A. Sher, A. Wack, and A. O'Garra. 2015. Type I interferons in infectious disease. Nature Reviews. Immunology 15: 87–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Negishi, H., T. Taniguchi, and H. Yanai. 2018. The interferon (IFN) class of cytokines and the IFN regulatory factor (IRF) transcription factor family. Cold Spring Harbor Perspectives in Biology 10: a028423.

  125. Schauvliege, R., J. Vanrobaeys, P. Schotte, and R. Beyaert. 2002. Caspase-11 gene expression in response to lipopolysaccharide and interferon-gamma requires nuclear factor-kappa B and signal transducer and activator of transcription (STAT) 1. The Journal of Biological Chemistry 277: 41624–41630.

    Article  CAS  PubMed  Google Scholar 

  126. Rathinam, V.A., S.K. Vanaja, L. Waggoner, A. Sokolovska, C. Becker, L.M. Stuart, J.M. Leong, and K.A. Fitzgerald. 2012. TRIF licenses caspase-11-dependent NLRP3 inflammasome activation by gram-negative bacteria. Cell 150: 606–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Kayagaki, N., M.T. Wong, I.B. Stowe, S.R. Ramani, L.C. Gonzalez, S. Akashi-Takamura, K. Miyake, J. Zhang, W.P. Lee, A. Muszyński, L.S. Forsberg, R.W. Carlson, and V.M. Dixit. 2013. Noncanonical inflammasome activation by intracellular LPS independent of TLR4. Science (New York, N.Y.) 341: 1246–1249.

    Article  CAS  Google Scholar 

  128. Py, B.F., M. Jin, B.N. Desai, A. Penumaka, H. Zhu, M. Kober, A. Dietrich, M.M. Lipinski, T. Henry, D.E. Clapham, and J. Yuan. 2014. Caspase-11 controls interleukin-1β release through degradation of TRPC1. Cell Reports 6: 1122–1128.

    Article  CAS  PubMed  Google Scholar 

  129. Man, S.M., R. Karki, M. Sasai, D.E. Place, S. Kesavardhana, J. Temirov, S. Frase, Q. Zhu, R.K.S. Malireddi, T. Kuriakose, J.L. Peters, G. Neale, S.A. Brown, M. Yamamoto, and T.D. Kanneganti. 2016. IRGB10 liberates bacterial ligands for sensing by the AIM2 and caspase-11-NLRP3 inflammasomes. Cell 167: 382–396.e317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Santos, J.C., M.S. Dick, B. Lagrange, D. Degrandi, K. Pfeffer, M. Yamamoto, E. Meunier, P. Pelczar, T. Henry, and P. Broz. 2018. LPS targets host guanylate-binding proteins to the bacterial outer membrane for non-canonical inflammasome activation. The EMBO Journal 37: e98089.

  131. Santos, J.C., D. Boucher, L.K. Schneider, B. Demarco, M. Dilucca, K. Shkarina, R. Heilig, K.W. Chen, R.Y.H. Lim, and P. Broz. 2020. Human GBP1 binds LPS to initiate assembly of a caspase-4 activating platform on cytosolic bacteria. Nature Communications 11: 3276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Kuriakose, T., S.M. Man, R.K. Malireddi, R. Karki, S. Kesavardhana, D.E. Place, G. Neale, P. Vogel, and T.D. Kanneganti. 2016. ZBP1/DAI is an innate sensor of influenza virus triggering the NLRP3 inflammasome and programmed cell death pathways. Science Immunology 1: aag2045.

  133. Xie, C.B., L. Qin, G. Li, C. Fang, N.C. Kirkiles-Smith, G. Tellides, J.S. Pober, and D. Jane-Wit. 2019. Complement membrane attack complexes assemble NLRP3 inflammasomes triggering IL-1 activation of IFN-γ-primed human endothelium. Circulation Research 124: 1747–1759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Nguyen, V.T., and E.N. Benveniste. 2000. Involvement of STAT-1 and ets family members in interferon-gamma induction of CD40 transcription in microglia/macrophages. The Journal of Biological Chemistry 275: 23674–23684.

    Article  CAS  PubMed  Google Scholar 

  135. Gaikwad, S., D. Patel, and R. Agrawal-Rajput. 2017. CD40 negatively regulates ATP-TLR4-activated inflammasome in microglia. Cellular and Molecular Neurobiology 37: 351–359.

    Article  CAS  PubMed  Google Scholar 

  136. Guarda, G., M. Braun, F. Staehli, A. Tardivel, C. Mattmann, I. Förster, M. Farlik, T. Decker, R.A. Du Pasquier, P. Romero, and J. Tschopp. 2011. Type I interferon inhibits interleukin-1 production and inflammasome activation. Immunity 34: 213–223.

    Article  CAS  PubMed  Google Scholar 

  137. Manning, B.D., and L.C. Cantley. 2007. AKT/PKB signaling: navigating downstream. Cell 129: 1261–1274.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Petrulea, M.S., T.S. Plantinga, J.W. Smit, C.E. Georgescu, and R.T. Netea-Maier. 2015. PI3K/Akt/mTOR: A promising therapeutic target for non-medullary thyroid carcinoma. Cancer Treatment Reviews 41: 707–713.

    Article  CAS  PubMed  Google Scholar 

  139. Yang, Y., Y. Sun, J. Xu, K. Bao, M. Luo, X. Liu, and Y. Wang. 2018. Epithelial cells attenuate toll-like receptor-mediated inflammatory responses in monocyte-derived macrophage-like cells to mycobacterium tuberculosis by modulating the PI3K/Akt/mTOR signaling pathway. Mediators of Inflammation 2018: 3685948.

    PubMed  PubMed Central  Google Scholar 

  140. Settembre, C., C. Di Malta, V.A. Polito, M. Garcia Arencibia, F. Vetrini, S. Erdin, S.U. Erdin, T. Huynh, D. Medina, P. Colella, M. Sardiello, D.C. Rubinsztein, and A. Ballabio. 2011. TFEB links autophagy to lysosomal biogenesis. Science 332: 1429–33.

  141. Krieg, S., B. Lüscher, J. Vervoorts, and M. Dohmen. 2018. Studying the role of AMPK in autophagy. Methods in Molecular Biology (Clifton, N.J.) 1732: 373–391.

    Article  CAS  Google Scholar 

  142. Kim, S.H., G. Kim, D.H. Han, M. Lee, I. Kim, B. Kim, K.H. Kim, Y.M. Song, J.E. Yoo, H.J. Wang, S.H. Bae, Y.H. Lee, B.W. Lee, E.S. Kang, B.S. Cha, and M.S. Lee. 2017. Ezetimibe ameliorates steatohepatitis via AMP activated protein kinase-TFEB-mediated activation of autophagy and NLRP3 inflammasome inhibition. Autophagy 13: 1767–1781.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Inoki, K., T. Zhu, and K.L. Guan. 2003. TSC2 mediates cellular energy response to control cell growth and survival. Cell 115: 577–590.

    Article  CAS  PubMed  Google Scholar 

  144. Gwinn, D.M., D.B. Shackelford, D.F. Egan, M.M. Mihaylova, A. Mery, D.S. Vasquez, B.E. Turk, and R.J. Shaw. 2008. AMPK phosphorylation of raptor mediates a metabolic checkpoint. Molecular Cell 30: 214–226.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Salminen, A., and K. Kaarniranta. 2012. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Research Reviews 11: 230–241.

    Article  CAS  PubMed  Google Scholar 

  146. Sato, M., H. Suemori, N. Hata, M. Asagiri, K. Ogasawara, K. Nakao, T. Nakaya, M. Katsuki, S. Noguchi, N. Tanaka, and T. Taniguchi. 2000. Distinct and essential roles of transcription factors IRF-3 and IRF-7 in response to viruses for IFN-alpha/beta gene induction. Immunity 13: 539–548.

    Article  CAS  PubMed  Google Scholar 

  147. Fitzgerald, K.A., S.M. McWhirter, K.L. Faia, D.C. Rowe, E. Latz, D.T. Golenbock, A.J. Coyle, S.M. Liao, and T. Maniatis. 2003. IKKepsilon and TBK1 are essential components of the IRF3 signaling pathway. Nature Immunology 4: 491–496.

    Article  CAS  PubMed  Google Scholar 

  148. Tamura, T., H. Yanai, D. Savitsky, and T. Taniguchi. 2008. The IRF family transcription factors in immunity and oncogenesis. Annual Review of Immunology 26: 535–584.

    Article  CAS  PubMed  Google Scholar 

  149. Samie, M., J. Lim, E. Verschueren, J.M. Baughman, I. Peng, A. Wong, Y. Kwon, Y. Senbabaoglu, J.A. Hackney, M. Keir, B. McKenzie, D.S. Kirkpatrick, M. van Lookeren Campagne, and A. Murthy. 2018. Selective autophagy of the adaptor TRIF regulates innate inflammatory signaling. Nature Immunology 19: 246–254.

    Article  CAS  PubMed  Google Scholar 

  150. Meares, G.P., H. Qin, Y. Liu, A.T. Holdbrooks, and E.N. Benveniste. 2013. AMP-activated protein kinase restricts IFN-γ signaling. Journal of Immunology (Baltimore, Md. : 1950) 190: 372–380.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 81873064, No. 81773965 and No. 81673664).

Author information

Authors and Affiliations

Authors

Contributions

Chen M and Ye X wrote this manuscript. He X and Ouyang D conceived and supervised this review.

Corresponding authors

Correspondence to Xian-hui He or Dong-yun Ouyang.

Ethics declarations

Consent for Publication

All the authors have approved to publish this manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, My., Ye, Xj., He, Xh. et al. The Signaling Pathways Regulating NLRP3 Inflammasome Activation. Inflammation 44, 1229–1245 (2021). https://doi.org/10.1007/s10753-021-01439-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01439-6

KEY WORDS

Navigation