Skip to main content

Advertisement

Log in

9,10-Anhydrodehydroartemisinin Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Th1 and Th17 Cell Differentiation

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Human inflammatory disease, multiple sclerosis (MS), is a demyelinating disease of central nervous system (CNS). The experimental autoimmune encephalomyelitis (EAE) is the most commonly used as experimental model because of its key pathological features’ approximation of MS. The interaction between complex elements in immune system and in the CNS determines the MS pathogenesis. However, there is no cure for MS and the treatment for MS still encounters great challenges. Thus, finding a more effective disease-modifying treatment is imminent. In the present study, we investigated whether 9,10-Anhydrodehydroartemisin (ADART), a compound derived from artemisinin, could decrease demyelination in EAE and the underlying mechanisms. In established EAE mice, 100 mg/kg 9,10-Anhydrodehydroartemisinin (ADART) effectively reduced CNS and peripheral immune system infiltration inflammatory cells including CD4+ IFN-γ+ Th1 cells and CD4+ IL-17A+ Th17 cells. Correspondingly, the serum level of IFN-γ and IL-17A was also reduced. In vitro, ADART almost completely inhibited Th17 differentiation, and partially inhibited Th1 differentiation in 10 μM. This research revealed that ADART could be a great promising avenue among current therapies for MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in the article.

References

  1. Gauthier, S.A., B.I. Glanz, M. Mandel, and H.L. Weiner. 2006. A model for the comprehensive investigation of a chronic autoimmune disease: The multiple sclerosis CLIMB study. Autoimmunity Reviews 5: 532–536.

    Article  CAS  Google Scholar 

  2. Legroux, L., and N. Arbour. 2015. Multiple sclerosis and T lymphocytes: An entangled story. Journal of Neuroimmune Pharmacology 10: 528–546.

    Article  Google Scholar 

  3. Fletcher, J.M., S.J. Lalor, C.M. Sweeney, N. Tubridy, and K.H. Mills. 2010. T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clinical and Experimental Immunology 162: 1–11.

    Article  CAS  Google Scholar 

  4. McGinley, A.M., S.C. Edwards, M. Raverdeau, and K.H.G. Mills. 2018. Th17 cells, gamma delta T cells and their interplay in EAE and multiple sclerosis. Journal of Autoimmunity 87: 97–108.

    Article  CAS  Google Scholar 

  5. Ho, P.R., H. Koendgen, N. Campbell, B. Haddock, S. Richman, and I. Chang. 2017. Risk of natalizumab-associated progressive multifocal leukoencephalopathy in patients with multiple sclerosis: A retrospective analysis of data from four clinical studies. Lancet Neurology 16: 925–933.

    Article  CAS  Google Scholar 

  6. Bloomgren, G., S. Richman, C. Hotermans, M. Subramanyam, S. Goelz, A. Natarajan, S. Lee, T. Plavina, J.V. Scanlon, A. Sandrock, and C. Bozic. 2012. Risk of natalizumab-associated progressive multifocal leukoencephalopathy. The New England Journal of Medicine 366: 1870–1880.

    Article  CAS  Google Scholar 

  7. Khakzad, M.R., A. Ganji, V. Ariabod, and I. Farahani. 2017. Artemisinin therapeutic efficacy in the experimental model of multiple sclerosis. Immunopharmacology and Immunotoxicology 39: 348–353.

    Article  CAS  Google Scholar 

  8. Wang, J.X., W. Tang, R. Zhou, J. Wan, L.P. Shi, Y. Zhang, Y.F. Yang, Y. Li, and J.P. Zuo. 2008. The new water-soluble artemisinin derivative SM905 ameliorates collagen-induced arthritis by suppression of inflammatory and Th17 responses. British Journal of Pharmacology 153: 1303–1310.

    Article  CAS  Google Scholar 

  9. Yang, Z., J. Ding, C. Yang, Y. Gao, X. Li, X. Chen, Y. Peng, J. Fang, and S. Xiao. 2012. Immunomodulatory and anti-inflammatory properties of artesunate in experimental colitis. Current Medicinal Chemistry 19: 4541–4551.

    Article  CAS  Google Scholar 

  10. Jin, O., H. Zhang, Z. Gu, S. Zhao, T. Xu, K. Zhou, B. Jiang, J. Wang, X. Zeng, and L. Sun. 2009. A pilot study of the therapeutic efficacy and mechanism of artesunate in the MRL/lpr murine model of systemic lupus erythematosus. Cellular & Molecular Immunology 6: 461–467.

    Article  CAS  Google Scholar 

  11. Hou, L., K.E. Block, and H. Huang. 2014. Artesunate abolishes germinal center B cells and inhibits autoimmune arthritis. PLoS One 9: e104762.

    Article  Google Scholar 

  12. Liu, X., J. Cao, G. Huang, Q. Zhao, and J. Shen. 2019. Biological activities of artemisinin derivatives beyond malaria. Current Topics in Medicinal Chemistry 19: 205–222.

    Article  CAS  Google Scholar 

  13. Toovey, S., and A. Jamieson. 2004. Audiometric changes associated with the treatment of uncomplicated falciparum malaria with co-artemether. Transactions of the Royal Society of Tropical Medicine and Hygiene 98: 261–267 discussion 268-9.

    Article  Google Scholar 

  14. Rappocciolo, E. 2004. Antimicrobial peptides as carriers of drugs. Drug Discovery Today 9: 470.

    Article  Google Scholar 

  15. Wang, X., W. Zhai, J. Zhu, W. Zhao, X. Zou, S. Qu, S. Wang, Z. He, Z. Li, L. Wang, B. Sun, and H. Li. 2019. Treatment of the bone marrow stromal stem cell supernatant by nasal administration-a new approach to EAE therapy. Stem Cell Research & Therapy 10: 325.

    Article  Google Scholar 

  16. Chung, C.Y., and F. Liao. 2016. CXCR3 signaling in glial cells ameliorates experimental autoimmune encephalomyelitis by restraining the generation of a pro-Th17 cytokine milieu and reducing CNS-infiltrating Th17 cells. Journal of Neuroinflammation 13: 76.

    Article  Google Scholar 

  17. Kaskow B.J., and Baecher-A.C. 2018. Effector T cells in multiple sclerosis. Cold Spring Harbor Perspectives in Medicine 8: a029025.

  18. Souza, P.S., E.D. Goncalves, G.S. Pedroso, H.R. Farias, S.C. Junqueira, R. Marcon, et al. 2017. Physical exercise attenuates experimental autoimmune encephalomyelitis by inhibiting peripheral immune response and blood-brain barrier disruption. Molecular Neurobiology 54: 4723–4737.

    Article  CAS  Google Scholar 

  19. McFarland, H.F., and R. Martin. 2007. Multiple sclerosis: A complicated picture of autoimmunity. Nature Immunology 8: 913–919.

    Article  CAS  Google Scholar 

  20. Van Kaer, L., J.L. Postoak, C. Wang, G. Yang, and L. Wu. 2019. Innate, innate-like and adaptive lymphocytes in the pathogenesis of MS and EAE. Cellular & Molecular Immunology 16: 531–539.

    Article  Google Scholar 

  21. Goverman, J. 2009. Autoimmune T cell responses in the central nervous system. Nature Reviews. Immunology 9: 393–407.

    Article  CAS  Google Scholar 

  22. Aranami, T., and T. Yamamura. 2008. Th17 Cells and autoimmune encephalomyelitis (EAE/MS). Allergology International 57: 115–120.

    Article  CAS  Google Scholar 

  23. Kroenke, M.A., T.J. Carlson, A.V. Andjelkovic, and B.M. Segal. 2008. IL-12- and IL-23-modulated T cells induce distinct types of EAE based on histology, CNS chemokine profile, and response to cytokine inhibition. The Journal of Experimental Medicine 205: 1535–1541.

    Article  CAS  Google Scholar 

  24. Zheng, H., H. Zhang, F. Liu, Y. Qi, and H. Jiang. 2014. T cell-depleted splenocytes from mice pre-immunized with neuroantigen in incomplete Freund's adjuvant involved in protection from experimental autoimmune encephalomyelitis. Immunology Letters 157: 38–44.

    Article  CAS  Google Scholar 

  25. Lee, H.G., L.K. Kim, and J.M. Choi. 2020. NFAT-specific inhibition by dNP2-VIVIT ameliorates autoimmune encephalomyelitis by regulation of Th1 and Th17. Molecular Therapy - Methods & Clinical Development  16: 32–41.

  26. Quan, M.Y., X.J. Song, H.J. Liu, X.H. Deng, H.Q. Hou, L.P. Chen, T.Z. Ma, X. Han, X.X. He, Z. Jia, and L. Guo. 2019. Amlexanox attenuates experimental autoimmune encephalomyelitis by inhibiting dendritic cell maturation and reprogramming effector and regulatory T cell responses. Journal of Neuroinflammation 16: 52.

    Article  Google Scholar 

  27. Novikova, N.S., A.S. Diatlova, K.Z. Derevtsova, E.A. Korneva, T.V. Viktorovna, Y. Ostrinki, L. Abraham, S. Quinn, Y. Segal, L.P. Churilov, M. Blank, Y. Shoenfeld, R. Aharoni, and H. Amital. 2019. Tuftsin-phosphorylcholine attenuate experimental autoimmune encephalomyelitis. Journal of Neuroimmunology 337: 577070.

    Article  CAS  Google Scholar 

  28. Wang, J.X., W. Tang, L.P. Shi, J. Wan, R. Zhou, J. Ni, Y.F. Fu, Y.F. Yang, Y. Li, and J.P. Zuo. 2007. Investigation of the immunosuppressive activity of artemether on T-cell activation and proliferation. British Journal of Pharmacology 150: 652–661.

    Article  CAS  Google Scholar 

  29. Thome, R., A.C. de Carvalho, T. Alves da Costa, L.L. Ishikawa, T.F. Fraga-Silva, A. Sartori, et al. 2016. Artesunate ameliorates experimental autoimmune encephalomyelitis by inhibiting leukocyte migration to the central nervous system. CNS Neuroscience & Therapeutics 22: 707–714.

    Article  CAS  Google Scholar 

  30. Li, X., T.T. Li, X.H. Zhang, L.F. Hou, X.Q. Yang, F.H. Zhu, W. Tang, and J.P. Zuo. 2013. Artemisinin analogue SM934 ameliorates murine experimental autoimmune encephalomyelitis through enhancing the expansion and functions of regulatory T cell. PLoS One 8: e74108.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (32070768, 31871404, 31900658), the Special Foundation of Chinese Academy of Sciences for strategic pilot technology (XDA12040327), Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX01), and the State Key Laboratory of Drug Research.

Author information

Authors and Affiliations

Authors

Contributions

Design and experimentation: J.L., W.Z., X.J., L.X., Z.L., Q.Z., and Y.Z.; supervision: C.D. and J.S.; and manuscript writing: W.Z. and C.D.

Corresponding authors

Correspondence to Xiangrui Jiang or Changsheng Du.

Ethics declarations

Ethics Approval and Consent to Participate

All experiment procedures were approved and carried out in accordance with the Tongji University Animal Care Committee guidelines.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lv, J., Zhuang, W., Zhang, Y. et al. 9,10-Anhydrodehydroartemisinin Attenuates Experimental Autoimmune Encephalomyelitis by Inhibiting Th1 and Th17 Cell Differentiation. Inflammation 44, 1793–1802 (2021). https://doi.org/10.1007/s10753-021-01456-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01456-5

KEY WORDS

Navigation