Skip to main content

Advertisement

Log in

Differential Expression and Copy Number Variation of Gasdermin (GSDM) Family Members, Pore-Forming Proteins in Pyroptosis, in Normal and Malignant Serous Ovarian Tissue

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Gasdermins (GSDM) are members of a family of pore-forming effector proteins which lead to membrane permeabilization and pyroptosis, a lytic cell death with pro-inflammatory characteristics. Recently, two members of the gasdermin family, gasdermin B (GSDMB) and gasdermin E (GSDME), were shown to suppress tumor growth, through the involvement of cytotoxic lymphocytes. Other studies also reported the important functions of gasdermins in various cancer types including gastric cancer, hepatocarcinoma, and cervix and breast cancer. However, gasdermins have not been previously studied in the context of serous ovarian cancer. Here, we showed that gasdermin D (GSDMD) and gasdermin C (GSDMC) expression increases in serous ovarian cancer; in contrast, the expression of GSDME and PJVK (Pejvakin, DFNB59) is downregulated, compared to healthy ovaries, in multiple independent gene expression datasets. We found that copy number gains are highly frequent (present in approximately 50% of patients) in genes encoding GSDMD and GSDMC in ovarian cancer, in line with their upregulated expression in serous ovarian cancer. Moreover, we observed that the expression of GSDMB and GSDMD, but not of GSDME, is different among several histotypes of epithelial ovarian cancer. Therefore, we propose that differential expression and copy number variations of certain gasdermins might be associated with the development of serous ovarian cancer, in which different members of the family have distinct functions; however, further research is required in in vivo models to understand how changes in gasdermin family members mechanistically contribute to serous ovarian cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Material

Data sources were given in the “MATERIALS AND METHODS” section.

Code Availability

R code used in the analysis was given as a supplementary file.

References

  1. Ferlay, J., I. Soerjomataram, R. Dikshit, S. Eser, C. Mathers, M. Rebelo, D.M. Parkin, D. Forman, and F. Bray. 2015 Mar 1. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 136 (5): E359–E386. https://doi.org/10.1002/ijc.29210.

    Article  CAS  PubMed  Google Scholar 

  2. Berkel, C., and E. Cacan. 2021. Transcriptomic analysis reveals tumor stage- or grade-dependent expression of miRNAs in serous ovarian cancer. Hum Cell. 34: 862–877. https://doi.org/10.1007/s13577-021-00486-3.

    Article  CAS  PubMed  Google Scholar 

  3. Bristow, R.E., R.S. Tomacruz, D.K. Armstrong, E.L. Trimble, and F.J. Montz. 2002 Mar 1. Survival effect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol. 20 (5): 1248–1259. https://doi.org/10.1200/JCO.2002.20.5.1248.

    Article  PubMed  Google Scholar 

  4. Kyrgiou, M., G. Salanti, N. Pavlidis, E. Paraskevaidis, and J.P. Ioannidis. 2006. Survival benefits with diverse chemotherapy regimens for ovarian cancer: meta-analysis of multiple treatments. J Natl Cancer Inst. 98 (22): 1655–1663. https://doi.org/10.1093/jnci/djj443.

    Article  CAS  PubMed  Google Scholar 

  5. Coukos, G., J. Tanyi, and L.E. Kandalaft. 2016. Opportunities in immunotherapy of ovarian cancer. Ann Oncol (Suppl 1): i11–i15. https://doi.org/10.1093/annonc/mdw084 PMID: 27141063; PMCID: PMC4852275.

  6. Drake, C.G., E.J. Lipson, and J.R. Brahmer. 2014. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol (1): 24–37. https://doi.org/10.1038/nrclinonc.2013.208 Epub 2013 Nov 19. PMID: 24247168; PMCID: PMC4086654.

  7. Kayagaki, N., I.B. Stowe, B.L. Lee, K. O’Rourke, K. Anderson, S. Warming, T. Cuellar, B. Haley, M. Roose-Girma, Q.T. Phung, P.S. Liu, J.R. Lill, H. Li, J. Wu, S. Kummerfeld, J. Zhang, W.P. Lee, S.J. Snipas, G.S. Salvesen, L.X. Morris, L. Fitzgerald, Y. Zhang, E.M. Bertram, C.C. Goodnow, and V.M. Dixit. 2015 Oct 29. Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526 (7575): 666–671. https://doi.org/10.1038/nature15541.

    Article  CAS  PubMed  Google Scholar 

  8. Shi, J., Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang, and F. Shao. 2015 Oct 29. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526 (7575): 660–665. https://doi.org/10.1038/nature15514.

    Article  CAS  PubMed  Google Scholar 

  9. He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, Z.H. Yang, C.Q. Zhong, and J. Han. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1β secretion. Cell Res (12): 1285–1298. https://doi.org/10.1038/cr.2015.139 Epub 2015 Nov 27. PMID: 26611636; PMCID: PMC4670995.

  10. Broz, P., P. Pelegrín, and F. Shao. 2020 Mar. The gasdermins, a protein family executing cell death and inflammation. Nat Rev Immunol. 20 (3): 143–157. https://doi.org/10.1038/s41577-019-0228-2.

    Article  CAS  PubMed  Google Scholar 

  11. Ding, J., K. Wang, W. Liu, Y. She, Q. Sun, J. Shi, H. Sun, D.C. Wang, and F. Shao. 2016. Pore-forming activity and structural autoinhibition of the gasdermin family. Nature 535 (7610): 111–116. https://doi.org/10.1038/nature18590 Epub 2016 Jun 8. Erratum in: Nature. 2016 Dec 1;540(7631):150.

    Article  CAS  PubMed  Google Scholar 

  12. Aglietti, R.A., A. Estevez, A. Gupta, M.G. Ramirez, P.S. Liu, N. Kayagaki, C. Ciferri, V.M. Dixit, and E.C. Dueber. 2016. GsdmD p30 elicited by caspase-11 during pyroptosis forms pores in membranes. Proc Natl Acad Sci U S A 113 (28): 7858–7863. https://doi.org/10.1073/pnas.1607769113 Epub 2016 Jun 23. PMID: 27339137; PMCID: PMC4948338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Liu, X., Z. Zhang, J. Ruan, Y. Pan, V.G. Magupalli, H. Wu, and J. Lieberman. 2016. Inflammasome-activated gasdermin D causes pyroptosis by forming membrane pores. Nature 535 (7610): 153–158. https://doi.org/10.1038/nature18629 PMID: 27383986; PMCID: PMC5539988.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sborgi L, Rühl S, Mulvihill E, Pipercevic J, Heilig R, Stahlberg H, Farady CJ, Müller DJ, Broz P, Hiller S. GSDMD membrane pore formation constitutes the mechanism of pyroptotic cell death. EMBO J. 2016 Aug 15;35(16):1766-78. doi: 10.15252/embj.201694696. Epub 2016 Jul 14. PMID: 27418190; PMCID: PMC5010048.

  15. Demarco B, Grayczyk JP, Bjanes E, Le Roy D, Tonnus W, Assenmacher CA, Radaelli E, Fettrelet T, Mack V, Linkermann A, Roger T, Brodsky IE, Chen KW, Broz P. Caspase-8-dependent gasdermin D cleavage promotes antimicrobial defense but confers susceptibility to TNF-induced lethality. Sci Adv. 2020 Nov 18;6(47):eabc3465. doi: https://doi.org/10.1126/sciadv.abc3465. PMID: 33208362; PMCID: PMC7673803.

  16. Chen KW, Demarco B, Heilig R, Shkarina K, Boettcher A, Farady CJ, Pelczar P, Broz P. Extrinsic and intrinsic apoptosis activate pannexin-1 to drive NLRP3 inflammasome assembly. EMBO J. 2019 May 15;38(10):e101638. doi: https://doi.org/10.15252/embj.2019101638. Epub 2019 Mar 22. PMID: 30902848; PMCID: PMC6517827.

  17. Orning P, Weng D, Starheim K, Ratner D, Best Z, Lee B, Brooks A, Xia S, Wu H, Kelliher MA, Berger SB, Gough PJ, Bertin J, Proulx MM, Goguen JD, Kayagaki N, Fitzgerald KA, Lien E. Pathogen blockade of TAK1 triggers caspase-8-dependent cleavage of gasdermin D and cell death. Science. 2018 Nov 30;362(6418):1064-1069. doi: https://doi.org/10.1126/science.aau2818. Epub 2018 Oct 25. PMID: 30361383; PMCID: PMC6522129.

  18. Sarhan J, Liu BC, Muendlein HI, Li P, Nilson R, Tang AY, Rongvaux A, Bunnell SC, Shao F, Green DR, Poltorak A. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):E10888-E10897. doi: https://doi.org/10.1073/pnas.1809548115. Epub 2018 Oct 31. PMID: 30381458; PMCID: PMC6243247.

  19. Sanjo, H., J. Nakayama, T. Yoshizawa, H.J. Fehling, S. Akira, and S. Taki. 2019 Aug 15. Cutting edge: TAK1 safeguards macrophages against proinflammatory cell death. J Immunol. 203 (4): 783–788. https://doi.org/10.4049/jimmunol.1900202.

    Article  CAS  PubMed  Google Scholar 

  20. Wang, Y., W. Gao, X. Shi, J. Ding, W. Liu, H. He, K. Wang, and F. Shao. 2017 Jul 6. Chemotherapy drugs induce pyroptosis through caspase-3 cleavage of a gasdermin. Nature. 547 (7661): 99–103. https://doi.org/10.1038/nature22393.

    Article  CAS  PubMed  Google Scholar 

  21. Rogers C, Fernandes-Alnemri T, Mayes L, Alnemri D, Cingolani G, Alnemri ES. Cleavage of DFNA5 by caspase-3 during apoptosis mediates progression to secondary necrotic/pyroptotic cell death. Nat Commun. 2017 Jan 3;8:14128. doi: https://doi.org/10.1038/ncomms14128. PMID: 28045099; PMCID: PMC5216131.

  22. Hou J, Zhao R, Xia W, Chang CW, You Y, Hsu JM, Nie L, Chen Y, Wang YC, Liu C, Wang WJ, Wu Y, Ke B, Hsu JL, Huang K, Ye Z, Yang Y, Xia X, Li Y, Li CW, Shao B, Tainer JA, Hung MC. PD-L1-mediated gasdermin C expression switches apoptosis to pyroptosis in cancer cells and facilitates tumour necrosis. Nat Cell Biol. 2020 Oct;22(10):1264-1275. doi: https://doi.org/10.1038/s41556-020-0575-z. Epub 2020 Sep 14. Erratum in: Nat Cell Biol. 2020 Nov;22(11):1396. PMID: 32929201; PMCID: PMC7653546.

  23. Saeki, N., Y. Kuwahara, H. Sasaki, H. Satoh, and T. Shiroishi. 2000 Sep. Gasdermin (Gsdm) localizing to mouse Chromosome 11 is predominantly expressed in upper gastrointestinal tract but significantly suppressed in human gastric cancer cells. Mamm Genome. 11 (9): 718–724. https://doi.org/10.1007/s003350010138.

    Article  CAS  PubMed  Google Scholar 

  24. Carl-McGrath, S., R. Schneider-Stock, M. Ebert, and C. Röcken. 2008 Jan. Differential expression and localisation of gasdermin-like (GSDML), a novel member of the cancer-associated GSDMDC protein family, in neoplastic and non-neoplastic gastric, hepatic, and colon tissues. Pathology. 40 (1): 13–24. https://doi.org/10.1080/00313020701716250.

    Article  CAS  PubMed  Google Scholar 

  25. Sun Q, Yang J, Xing G, Sun Q, Zhang L, He F. Expression of GSDML associates with tumor progression in uterine cervix cancer. Transl Oncol. 2008 Jul;1(2):73-83. doi: https://doi.org/10.1593/tlo.08112. PMID: 18633457; PMCID: PMC2510814.

  26. Hergueta-Redondo M, Sarrió D, Molina-Crespo Á, Megias D, Mota A, Rojo-Sebastian A, García-Sanz P, Morales S, Abril S, Cano A, Peinado H, Moreno-Bueno G. Gasdermin-B promotes invasion and metastasis in breast cancer cells. PLoS One. 2014 Mar 27;9(3):e90099. doi: https://doi.org/10.1371/journal.pone.0090099. PMID: 24675552; PMCID: PMC3967990.

  27. Watabe K, Ito A, Asada H, Endo Y, Kobayashi T, Nakamoto K, Itami S, Takao S, Shinomura Y, Aikou T, Yoshikawa K, Matsuzawa Y, Kitamura Y, Nojima H. Structure, expression and chromosome mapping of MLZE, a novel gene which is preferentially expressed in metastatic melanoma cells. Jpn J Cancer Res. 2001 Feb;92(2):140-51. doi: https://doi.org/10.1111/j.1349-7006.2001.tb01076.x. PMID: 11223543; PMCID: PMC5926699.

  28. Saeki, N., T. Usui, K. Aoyagi, D.H. Kim, M. Sato, T. Mabuchi, K. Yanagihara, K. Ogawa, H. Sakamoto, T. Yoshida, and H. Sasaki. 2009 Mar. Distinctive expression and function of four GSDM family genes (GSDMA-D) in normal and malignant upper gastrointestinal epithelium. Genes Chromosomes Cancer. 48 (3): 261–271. https://doi.org/10.1002/gcc.20636.

    Article  CAS  PubMed  Google Scholar 

  29. Miguchi M, Hinoi T, Shimomura M, Adachi T, Saito Y, Niitsu H, Kochi M, Sada H, Sotomaru Y, Ikenoue T, Shigeyasu K, Tanakaya K, Kitadai Y, Sentani K, Oue N, Yasui W, Ohdan H. Gasdermin C is upregulated by inactivation of transforming growth factor β receptor type II in the presence of mutated Apc, promoting colorectal cancer proliferation. PLoS One. 2016 Nov 11;11(11):e0166422. doi: https://doi.org/10.1371/journal.pone.0166422. PMID: 27835699; PMCID: PMC5105946.

  30. Zhang Z, Zhang Y, Xia S, Kong Q, Li S, Liu X, Junqueira C, Meza-Sosa KF, Mok TMY, Ansara J, Sengupta S, Yao Y, Wu H, Lieberman J. Gasdermin E suppresses tumour growth by activating anti-tumour immunity. Nature. 2020 Mar;579(7799):415-420. doi: https://doi.org/10.1038/s41586-020-2071-9. Epub 2020 Mar 11. PMID: 32188940; PMCID: PMC7123794.

  31. Zhou Z, He H, Wang K, Shi X, Wang Y, Su Y, Wang Y, Li D, Liu W, Zhang Y, Shen L, Han W, Shen L, Ding J, Shao F. Granzyme A from cytotoxic lymphocytes cleaves GSDMB to trigger pyroptosis in target cells. Science. 2020 May 29;368(6494):eaaz7548. doi: https://doi.org/10.1126/science.aaz7548. Epub 2020 Apr 16.

  32. Kayagaki, N., O.S. Kornfeld, B.L. Lee, I.B. Stowe, K. O’Rourke, Q. Li, W. Sandoval, D. Yan, J. Kang, M. Xu, J. Zhang, W.P. Lee, B.S. McKenzie, G. Ulas, J. Payandeh, M. Roose-Girma, Z. Modrusan, R. Reja, M. Sagolla, J.D. Webster, V. Cho, T.D. Andrews, L.X. Morris, L.A. Miosge, C.C. Goodnow, E.M. Bertram, and V.M. Dixit. 2021 Mar. NINJ1 mediates plasma membrane rupture during lytic cell death. Nature. 591 (7848): 131–136. https://doi.org/10.1038/s41586-021-03218-7.

    Article  CAS  PubMed  Google Scholar 

  33. Wang, Y., and F. Shao. 2021 Apr 1. NINJ1, rupturing swollen membranes for cataclysmic cell lysis. Mol Cell. 81 (7): 1370–1371. https://doi.org/10.1016/j.molcel.2021.03.005.

    Article  CAS  PubMed  Google Scholar 

  34. Qiao, L., X. Wu, J. Zhang, L. Liu, X. Sui, R. Zhang, W. Liu, F. Shen, Y. Sun, and X. Xi. 2019 Nov. α-NETA induces pyroptosis of epithelial ovarian cancer cells through the GSDMD/caspase-4 pathway. FASEB J. 33 (11): 12760–12767. https://doi.org/10.1096/fj.201900483RR.

    Article  CAS  PubMed  Google Scholar 

  35. Yoshihara, K., A. Tajima, D. Komata, T. Yamamoto, S. Kodama, H. Fujiwara, M. Suzuki, Y. Onishi, M. Hatae, K. Sueyoshi, H. Fujiwara, Y. Kudo, I. Inoue, and K. Tanaka. 2009 Aug. Gene expression profiling of advanced-stage serous ovarian cancers distinguishes novel subclasses and implicates ZEB2 in tumor progression and prognosis. Cancer Sci. 100 (8): 1421–1428. https://doi.org/10.1111/j.1349-7006.2009.01204.x.

    Article  CAS  PubMed  Google Scholar 

  36. Mok SC, Bonome T, Vathipadiekal V, Bell A, Johnson ME, Wong KK, Park DC, Hao K, Yip DK, Donninger H, Ozbun L, Samimi G, Brady J, Randonovich M, Pise-Masison CA, Barrett JC, Wong WH, Welch WR, Berkowitz RS, Birrer MJ. A gene signature predictive for outcome in advanced ovarian cancer identifies a survival factor: microfibril-associated glycoprotein 2. Cancer Cell. 2009 Dec 8;16(6):521-32. doi: https://doi.org/10.1016/j.ccr.2009.10.018. PMID: 19962670; PMCID: PMC3008560.

  37. Bonome T, Levine DA, Shih J, Randonovich M, Pise-Masison CA, Bogomolniy F, Ozbun L, Brady J, Barrett JC, Boyd J, Birrer MJ. A gene signature predicting for survival in suboptimally debulked patients with ovarian cancer. Cancer Res. 2008 Jul 1;68(13):5478-86. doi: https://doi.org/10.1158/0008-5472.CAN-07-6595. PMID: 18593951; PMCID: PMC7039050.

  38. Vathipadiekal, V., V. Wang, W. Wei, L. Waldron, R. Drapkin, M. Gillette, S. Skates, and M. Birrer. 2015 Nov 1. Creation of a human secretome: a novel composite library of human secreted proteins: validation using ovarian cancer gene expression data and a virtual secretome array. Clin Cancer Res. 21 (21): 4960–4969. https://doi.org/10.1158/1078-0432.CCR-14-3173.

    Article  CAS  PubMed  Google Scholar 

  39. Hendrix, N.D., R. Wu, R. Kuick, D.R. Schwartz, E.R. Fearon, and K.R. Cho. 2006 Feb 1. Fibroblast growth factor 9 has oncogenic activity and is a downstream target of Wnt signaling in ovarian endometrioid adenocarcinomas. Cancer Res. 66 (3): 1354–1362. https://doi.org/10.1158/0008-5472.CAN-05-3694.

    Article  CAS  PubMed  Google Scholar 

  40. Wu R, Zhai Y, Kuick R, Karnezis AN, Garcia P, Naseem A, Hu TC, Fearon ER, Cho KR. Impact of oviductal versus ovarian epithelial cell of origin on ovarian endometrioid carcinoma phenotype in the mouse. J Pathol. 2016 Nov;240(3):341-351. doi: https://doi.org/10.1002/path.4783. PMID: 27538791; PMCID: PMC5071155.

  41. Karlan, B.Y., J. Dering, C. Walsh, S. Orsulic, J. Lester, L.A. Anderson, C.L. Ginther, M. Fejzo, and D. Slamon. 2014 Feb. POSTN/TGFBI-associated stromal signature predicts poor prognosis in serous epithelial ovarian cancer. Gynecol Oncol. 132 (2): 334–342. https://doi.org/10.1016/j.ygyno.2013.12.021.

    Article  CAS  PubMed  Google Scholar 

  42. Cancer Genome Atlas Research Network. Integrated genomic analyses of ovarian carcinoma. Nature. 2011 Jun 29;474(7353):609-15. doi: https://doi.org/10.1038/nature10166. Erratum in: Nature. 2012 Oct 11;490(7419):298. PMID: 21720365; PMCID: PMC3163504.

  43. Ganzfried BF, Riester M, Haibe-Kains B, Risch T, Tyekucheva S, Jazic I, Wang XV, Ahmadifar M, Birrer MJ, Parmigiani G, Huttenhower C, Waldron L. curatedOvarianData: clinically annotated data for the ovarian cancer transcriptome. Database (Oxford). 2013 Apr 2;2013:bat013. doi: https://doi.org/10.1093/database/bat013. PMID: 23550061; PMCID: PMC3625954.

  44. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, Bravo HC, Davis S, Gatto L, Girke T, Gottardo R, Hahne F, Hansen KD, Irizarry RA, Lawrence M, Love MI, MacDonald J, Obenchain V, Oleś AK, Pagès H, Reyes A, Shannon P, Smyth GK, Tenenbaum D, Waldron L, Morgan M. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods. 2015 Feb;12(2):115-21. doi: https://doi.org/10.1038/nmeth.3252. PMID: 25633503; PMCID: PMC4509590.

  45. Grossman RL, Heath AP, Ferretti V, Varmus HE, Lowy DR, Kibbe WA, Staudt LM. Toward a shared vision for cancer genomic data. N Engl J Med. 2016 Sep 22;375(12):1109-12. doi: https://doi.org/10.1056/NEJMp1607591. PMID: 27653561; PMCID: PMC6309165.

  46. Gyorffy, B., A. Lánczky, and Z. Szállási. 2012 Apr 10. Implementing an online tool for genome-wide validation of survival-associated biomarkers in ovarian-cancer using microarray data from 1287 patients. Endocr Relat Cancer. 19 (2): 197–208. https://doi.org/10.1530/ERC-11-0329.

    Article  CAS  PubMed  Google Scholar 

  47. Core Team, R. 2020. R: a language and environment for statistical computing. In R Foundation for Statistical Computing. Vienna: Austria. URL https://www.R-project.org/.

    Google Scholar 

  48. Wickham, et al. 2019. Welcome to the tidyverse. Journal of Open Source Software 4 (43): 1686. https://doi.org/10.21105/joss.

    Article  Google Scholar 

  49. Hadley Wickham and Jennifer Bryan (2019) readxl: Read Excel Files. R package version 1.3.1. https://CRAN.R-project.org/

  50. Jeroen Ooms (2020). magick: advanced graphics and image-processing in R. R package version 2.5.2. https://CRAN.R-project.org/

  51. Alboukadel Kassambara (2020). ggpubr: ‘ggplot2’ Based Publication Ready Plots. R package version 0.4.0. https://CRAN.R-project.org/

  52. Silge J, Robinson D (2016). “tidytext: text mining and analysis using tidy data principles in R.” JOSS, 1(3). doi: https://doi.org/10.21105/joss.00037.

  53. Schloerke, Barret, Di Cook, Joseph Larmarange, Francois Briatte, Moritz Marbach, Edwin Thoen, Amos Elberg, and Jason Crowley. 2021. GGally: extension to ‘ggplot2’. R package version 2 (1): 1 https://CRAN.R-project.org/.

    Google Scholar 

  54. JJ Allaire and Yihui Xie and Jonathan McPherson and Javier Luraschi and Kevin Ushey and Aron Atkins and Hadley Wickham and Joe Cheng and Winston Chang and Richard Iannone (2020). rmarkdown: dynamic documents for R. R package version 2.6. https://rmarkdown.rstudio.com.

  55. Yihui Xie (2020). knitr: a general-purpose package for dynamic report generation in R. R package version 1.30.

  56. Baptiste Auguie (2017). gridExtra: miscellaneous functions for “Grid” graphics. R package version 2.3. https://CRAN.R-project.org/package=gridExtra

  57. Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, Carvalho-Silva D, Christensen M, Davis P, Grabmueller C, Kumar N, Liu Z, Maurel T, Moore B, McDowall MD, Maheswari U, Naamati G, Newman V, Ong CK, Paulini M, Pedro H, Perry E, Russell M, Sparrow H, Tapanari E, Taylor K, Vullo A, Williams G, Zadissia A, Olson A, Stein J, Wei S, Tello-Ruiz M, Ware D, Luciani A, Potter S, Finn RD, Urban M, Hammond-Kosack KE, Bolser DM, De Silva N, Howe KL, Langridge N, Maslen G, Staines DM, Yates A. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res. 2018 Jan 4;46(D1):D802-D808. https://doi.org/10.1093/nar/gkx1011. PMID: 29092050; PMCID: PMC5753204.

  58. Zerbino DR, Achuthan P, Akanni W, Amode MR, Barrell D, Bhai J, Billis K, Cummins C, Gall A, Girón CG, Gil L, Gordon L, Haggerty L, Haskell E, Hourlier T, Izuogu OG, Janacek SH, Juettemann T, To JK, Laird MR, Lavidas I, Liu Z, Loveland JE, Maurel T, McLaren W, Moore B, Mudge J, Murphy DN, Newman V, Nuhn M, Ogeh D, Ong CK, Parker A, Patricio M, Riat HS, Schuilenburg H, Sheppard D, Sparrow H, Taylor K, Thormann A, Vullo A, Walts B, Zadissa A, Frankish A, Hunt SE, Kostadima M, Langridge N, Martin FJ, Muffato M, Perry E, Ruffier M, Staines DM, Trevanion SJ, Aken BL, Cunningham F, Yates A, Flicek P. Ensembl 2018. Nucleic Acids Res. 2018 Jan 4;46(D1):D754-D761. https://doi.org/10.1093/nar/gkx1098. PMID: 29155950; PMCID: PMC5753206.

  59. Jiang S, Zhou Z, Sun Y, Zhang T, Sun L. Coral gasdermin triggers pyroptosis. Sci Immunol. 2020 Dec 4;5(54):eabd2591. https://doi.org/10.1126/sciimmunol.abd2591.

  60. Berkel C, Cacan E. GAB2 and GAB3 are expressed in a tumor stage-, grade- and histotype-dependent manner and are associated with shorter progression-free survival in ovarian cancer. J Cell Commun Signal. 2021 Mar;15(1):57-70. https://doi.org/10.1007/s12079-020-00582-3. Epub 2020 Sep 4. PMID: 32888136; PMCID: PMC7904992.

  61. Broz, P., and V.M. Dixit. 2016 Jul. Inflammasomes: mechanism of assembly, regulation and signalling. Nat Rev Immunol. 16 (7): 407–420. https://doi.org/10.1038/nri.2016.58.

    Article  CAS  PubMed  Google Scholar 

  62. Gao J, Qiu X, Xi G, Liu H, Zhang F, Lv T, Song Y. Downregulation of GSDMD attenuates tumor proliferation via the intrinsic mitochondrial apoptotic pathway and inhibition of EGFR/Akt signaling and predicts a good prognosis in non-small cell lung cancer. Oncol Rep. 2018 Oct;40(4):1971-1984. https://doi.org/10.3892/or.2018.6634. Epub 2018 Aug 7. PMID: 30106450; PMCID: PMC6111570.

  63. Taabazuing CY, Okondo MC, Bachovchin DA. Pyroptosis and apoptosis pathways engage in bidirectional crosstalk in monocytes and macrophages. Cell Chem Biol. 2017 Apr 20;24(4):507-514.e4. https://doi.org/10.1016/j.chembiol.2017.03.009. Epub 2017 Apr 6. PMID: 28392147; PMCID: PMC5467448.

  64. Akino, K., M. Toyota, H. Suzuki, T. Imai, R. Maruyama, M. Kusano, N. Nishikawa, Y. Watanabe, Y. Sasaki, T. Abe, E. Yamamoto, I. Tarasawa, T. Sonoda, M. Mori, K. Imai, Y. Shinomura, and T. Tokino. 2007 Jan. Identification of DFNA5 as a target of epigenetic inactivation in gastric cancer. Cancer Sci. 98 (1): 88–95. https://doi.org/10.1111/j.1349-7006.2006.00351.x.

    Article  CAS  PubMed  Google Scholar 

  65. Croes L, Beyens M, Fransen E, Ibrahim J, Vanden Berghe W, Suls A, Peeters M, Pauwels P, Van Camp G, Opde Beeck K. Large-scale analysis of DFNA5 methylation reveals its potential as biomarker for breast cancer. Clin Epigenetics. 2018 Apr 11;10:51. https://doi.org/10.1186/s13148-018-0479-y. PMID: 29682089; PMCID: PMC5896072.

  66. Croes L, de Beeck KO, Pauwels P, Vanden Berghe W, Peeters M, Fransen E, Van Camp G. DFNA5 promoter methylation a marker for breast tumorigenesis. Oncotarget. 2017 May 9;8(19):31948-31958. https://doi.org/10.18632/oncotarget.16654. PMID: 28404884; PMCID: PMC5458261.

  67. Kim MS, Lebron C, Nagpal JK, Chae YK, Chang X, Huang Y, Chuang T, Yamashita K, Trink B, Ratovitski EA, Califano JA, Sidransky D. Methylation of the DFNA5 increases risk of lymph node metastasis in human breast cancer. Biochem Biophys Res Commun. 2008 May 23;370(1):38-43. https://doi.org/10.1016/j.bbrc.2008.03.026. Epub 2008 Mar 17. PMID: 18346456; PMCID: PMC3094717.

  68. Ibrahim J, Opde Beeck K, Fransen E, Croes L, Beyens M, Suls A, Vanden Berghe W, Peeters M, Van Camp G. Methylation analysis of Gasdermin E shows great promise as a biomarker for colorectal cancer. Cancer Med. 2019 May;8(5):2133-2145. https://doi.org/10.1002/cam4.2103. Epub 2019 Apr 16. PMID: 30993897; PMCID: PMC6536921.

  69. Yokomizo, K., Y. Harada, K. Kijima, K. Shinmura, M. Sakata, K. Sakuraba, Y. Kitamura, A. Shirahata, T. Goto, H. Mizukami, M. Saito, G. Kigawa, H. Nemoto, and K. Hibi. 2012 Apr. Methylation of the DFNA5 gene is frequently detected in colorectal cancer. Anticancer Res. 32 (4): 1319–1322.

    CAS  PubMed  Google Scholar 

  70. Kim, M.S., X. Chang, K. Yamashita, J.K. Nagpal, J.H. Baek, G. Wu, B. Trink, E.A. Ratovitski, M. Mori, and D. Sidransky. 2008 Jun 5. Aberrant promoter methylation and tumor suppressive activity of the DFNA5 gene in colorectal carcinoma. Oncogene. 27 (25): 3624–3634. https://doi.org/10.1038/sj.onc.1211021.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thanks Burak Kucuk and Muhsine Ozen for their support.

Funding

CB is funded by The Scientific and Technological Research Council of Turkey (TUBITAK) 2211-E program.

Author information

Authors and Affiliations

Authors

Contributions

The authors equally contributed to the paper.

Corresponding authors

Correspondence to Caglar Berkel or Ercan Cacan.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 123 kb)

ESM 2

(PDF 20 kb)

ESM 3

(DOCX 19 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berkel, C., Cacan, E. Differential Expression and Copy Number Variation of Gasdermin (GSDM) Family Members, Pore-Forming Proteins in Pyroptosis, in Normal and Malignant Serous Ovarian Tissue. Inflammation 44, 2203–2216 (2021). https://doi.org/10.1007/s10753-021-01493-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01493-0

KEY WORDS

Navigation