Skip to main content

Advertisement

Log in

Schisandrin B Attenuates Airway Inflammation and Airway Remodeling in Asthma by Inhibiting NLRP3 Inflammasome Activation and Reducing Pyroptosis

  • Original Article
  • Published:
Inflammation Aims and scope Submit manuscript

Abstract

Asthma is a chronic inflammatory disorder of the airways. Schisandrin B (SB) is the main effective component. This study investigated the effects of SB on airway inflammation and airway remodeling in asthma. The rat model of asthma was established. The rats were treated with SB to evaluate the effects of SB on airway inflammation, airway remodeling, NLRP3 inflammasome activation, and pyroptosis. Alveolar macrophages of rats were isolated, and the macrophage inflammatory model was established by lipopolysaccharide (LPS) induction. The LPS-induced macrophages were treated with SB. The binding relationship between miR-135a-5p and TPRC1 was analyzed. LPS + SB-treated macrophages were transfected with miR-135a-5p inhibitor. The expressions of key factors of the STAT3/NF-κB pathway were detected. SB reduced airway inflammation and airway remodeling in asthmatic rats. SB inhibited NLRP3 inflammasome activation and reduced pyroptosis in asthmatic rats and LPS-induced macrophages. SB reversely regulated the miR-135a-5p/TRPC1 axis. Downregulation of miR-135a-5p attenuated the inhibitory effect of SB on NLRP3 inflammasome activation. SB inhibited the STAT3/NF-κB pathway via the miR-135a-5p/TRPC1 axis. In conclusion, SB inhibited NLRP3 inflammasome activation and reduced pyroptosis via the miR-135a-5p/TRPC1/STAT3/NF-κB axis, thus alleviating airway inflammation and airway remodeling in asthma. This study may confer novel insights for the management of asthma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

The datasets and materials used and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Radhakrishna, N., T.R. Tay, F. Hore-Lacy, R. Hoy, E. Dabscheck, and M. Hew. 2016. Profile of difficult to treat asthma patients referred for systematic assessment. Respir Med 117: 166–173.

    Article  CAS  PubMed  Google Scholar 

  2. Bousquet, J., E. Mantzouranis, A.A. Cruz, N. Ait-Khaled, et al. 2010. Uniform definition of asthma severity, control, and exacerbations: Document presented for the World Health Organization Consultation on Severe Asthma. J Allergy Clin Immunol 126 (5): 926–938.

    Article  PubMed  Google Scholar 

  3. Akinbami, L.J., J.E. Moorman, A.E. Simon, and K.C. Schoendorf. 2014. Trends in racial disparities for asthma outcomes among children 0 to 17 years, 2001-2010. J Allergy Clin Immunol 134 (3): 547–553 e545.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Alhassan, S., Y. Hattab, O. Bajwa, E. Bihler, and A.C. Singh. 2016. Asthma. Crit Care Nurs Q 39 (2): 110–123.

    Article  PubMed  Google Scholar 

  5. Fergeson, J.E., S.S. Patel, and R.F. Lockey. 2017. Acute asthma, prognosis, and treatment. J Allergy Clin Immunol 139 (2): 438–447.

    Article  CAS  PubMed  Google Scholar 

  6. Mims, J.W. 2015. Asthma: definitions and pathophysiology. Int Forum Allergy Rhinol 5 (Suppl 1): S2–S6.

    Article  PubMed  Google Scholar 

  7. Papi, A., C. Brightling, S.E. Pedersen, and H.K. Reddel. 2018. Asthma. Lancet 391 (10122): 783–800.

    Article  PubMed  Google Scholar 

  8. Castillo, J.R., S.P. Peters, and W.W. Busse. 2017. Asthma exacerbations: Pathogenesis, prevention, and treatment. J Allergy Clin Immunol Pract 5 (4): 918–927.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Boulet, L.P. 2018. Airway remodeling in asthma: Update on mechanisms and therapeutic approaches. Curr Opin Pulm Med 24 (1): 56–62.

    Article  PubMed  Google Scholar 

  10. Liu, G., M.A. Cooley, P.M. Nair, C. Donovan, A.C. Hsu, A.G. Jarnicki, T.J. Haw, N.G. Hansbro, Q. Ge, A.C. Brown, H. Tay, P.S. Foster, P.A. Wark, J.C. Horvat, J.E. Bourke, C.L. Grainge, W.S. Argraves, B.G. Oliver, D.A. Knight, J.K. Burgess, and P.M. Hansbro. 2017. Airway remodelling and inflammation in asthma are dependent on the extracellular matrix protein fibulin-1c. J Pathol 243 (4): 510–523.

    Article  CAS  PubMed  Google Scholar 

  11. Al-Muhsen, S., J.R. Johnson, and Q. Hamid. 2011. Remodeling in asthma. J Allergy Clin Immunol 128 (3): 451–462 quiz 463-454.

    Article  PubMed  Google Scholar 

  12. Du, H., Y. Wang, Y. Shi, J. Yu, W. Sun, and Y. Zhang. 2016. Effect of traditional Chinese medicine on inflammatory mediators in pediatric asthma. Mediat Inflamm 2016: 5143703.

    Article  Google Scholar 

  13. Rybnikar, M., K. Smejkal, and M. Zemlicka. 2019. Schisandra chinensis and its phytotherapeutical applications. Ceska Slov Farm 68 (3): 95–118.

    CAS  PubMed  Google Scholar 

  14. Nasser, M.I., S. Zhu, C. Chen, M. Zhao, H. Huang, and P. Zhu. 2020. A Comprehensive review on Schisandrin B and its biological properties. Oxidative Med Cell Longev 2020: 2172740.

    Article  CAS  Google Scholar 

  15. Leong, P.K., and K.M. Ko. 2016. Schisandrin B: A double-edged sword in nonalcoholic fatty liver disease. Oxidative Med Cell Longev 2016: 6171658.

    Article  Google Scholar 

  16. Ji, Z.R., W.L. Xue, and L. Zhang. 2019. Schisandrin B attenuates inflammation in LPS-induced sepsis through miR-17-5p downregulating TLR4. Inflammation 42 (2): 731–739.

    Article  CAS  PubMed  Google Scholar 

  17. Mou, Z., Z. Feng, Z. Xu, F. Zhuang, X. Zheng, X. Li, J. Qian, and G. Liang. 2019. Schisandrin B alleviates diabetic nephropathy through suppressing excessive inflammation and oxidative stress. Biochem Biophys Res Commun 508 (1): 243–249.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang, X.Y., L.X. Zhang, Y.L. Guo, L.M. Zhao, X.Y. Tang, C.J. Tian, D.J. Cheng, X.L. Chen, L.J. Ma, and Z.C. Chen. 2016. Schisandrin B inhibits the proliferation of airway smooth muscle cells via microRNA-135a suppressing the expression of transient receptor potential channel 1. Cell Biol Int 40 (7): 742–749.

    Article  CAS  PubMed  Google Scholar 

  19. Zhang, X.Y., X.Y. Tang, L.J. Ma, Y.L. Guo, X.S. Li, L.M. Zhao, C.J. Tian, D.J. Cheng, Z.C. Chen, and L.X. Zhang. 2017. Schisandrin B down-regulated lncRNA BCYRN1 expression of airway smooth muscle cells by improving miR-150 expression to inhibit the proliferation and migration of ASMC in asthmatic rats. Cell Prolif 50 (6): e12382.

    Article  PubMed Central  Google Scholar 

  20. Agarwal, V., G.W. Bell, J.W. Nam, and D.P. Bartel. 2015. Predicting effective microRNA target sites in mammalian mRNAs. Elife 4.

  21. Maslan, J., and J.W. Mims. 2014. What is asthma? Pathophysiology, demographics, and health care costs. Otolaryngol Clin N Am 47 (1): 13–22.

    Article  Google Scholar 

  22. Bergeron, C., and L.P. Boulet. 2006. Structural changes in airway diseases: Characteristics, mechanisms, consequences, and pharmacologic modulation. Chest 129 (4): 1068–1087.

    Article  CAS  PubMed  Google Scholar 

  23. Lee, M.Y., C.S. Seo, N.H. Lee, H. Ha, J.A. Lee, H. Lee, K.Y. Lee, and H.K. Shin. 2010. Anti-asthmatic effect of schizandrin on OVA-induced airway inflammation in a murine asthma model. Int Immunopharmacol 10 (11): 1374–1379.

    Article  CAS  PubMed  Google Scholar 

  24. Lee, K.S., S.J. Park, S.R. Kim, K.H. Min, K.Y. Lee, Y.H. Choe, S.H. Hong, Y.R. Lee, J.S. Kim, S.J. Hong, and Y.C. Lee. 2008. Inhibition of VEGF blocks TGF-beta1 production through a PI3K/Akt signalling pathway. Eur Respir J 31 (3): 523–531.

    Article  CAS  PubMed  Google Scholar 

  25. Wang, L., B. Zha, Q. Shen, H. Zou, C. Cheng, H. Wu, and R. Liu. 2018. Sevoflurane inhibits the Th2 response and NLRP3 expression in murine allergic airway inflammation. J Immunol Res 2018: 9021037.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Cheng, Y., S. Li, M. Wang, C. Cheng, and R. Liu. 2018. Peroxisome proliferator activated receptor gamma (PPARgamma) agonist rosiglitazone ameliorate airway inflammation by inhibiting toll-like receptor 2 (TLR2)/Nod-like receptor with pyrin domain containing 3 (NLRP3) inflammatory corpuscle activation in asthmatic mice. Med Sci Monit 24: 9045–9053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Jorgensen, I., M. Rayamajhi, and E.A. Miao. 2017. Programmed cell death as a defence against infection. Nat Rev Immunol 17 (3): 151–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. He, W.T., H. Wan, L. Hu, P. Chen, X. Wang, Z. Huang, Z.H. Yang, C.Q. Zhong, and J. Han. 2015. Gasdermin D is an executor of pyroptosis and required for interleukin-1beta secretion. Cell Res 25 (12): 1285–1298.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zhuang, J., H. Cui, L. Zhuang, Z. Zhai, F. Yang, G. Luo, J. He, H. Zhao, W. Zhao, Y. He, and E. Sun. 2020. Bronchial epithelial pyroptosis promotes airway inflammation in a murine model of toluene diisocyanate-induced asthma. Biomed Pharmacother 125: 109925.

    Article  CAS  PubMed  Google Scholar 

  30. Murray, P.J., and T.A. Wynn. 2011. Protective and pathogenic functions of macrophage subsets. Nat Rev Immunol 11 (11): 723–737.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lamkanfi, M., and V.M. Dixit. 2014. Mechanisms and functions of inflammasomes. Cell 157 (5): 1013–1022.

    Article  CAS  PubMed  Google Scholar 

  32. Pu, Q., Y. Zhao, Y. Sun, T. Huang, P. Lin, C. Zhou, S. Qin, B.B. Singh, and M. Wu. 2019. TRPC1 intensifies house dust mite-induced airway remodeling by facilitating epithelial-to-mesenchymal transition and STAT3/NF-kappaB signaling. FASEB J 33 (1): 1074–1085.

    Article  CAS  PubMed  Google Scholar 

  33. Sui, Y., L. Bian, Q. Ai, Y. Yao, M. Yu, H. Gao, A. Zhang, X. Fu, L. Zhong, and D. Lu. 2019. Gastrodin inhibits inflammasome through the STAT3 signal pathways in TNA2 astrocytes and reactive astrocytes in experimentally induced cerebral ischemia in rats. NeuroMolecular Med 21 (3): 275–286.

    Article  CAS  PubMed  Google Scholar 

  34. Jones, T.L., D.M. Neville, and A.J. Chauhan. 2018. Diagnosis and treatment of severe asthma: A phenotype-based approach. Clin Med (Lond) 18 (Suppl 2): s36–s40.

    Article  Google Scholar 

  35. Zhang, H.P., L. Wang, Z. Wang, X.R. Xu, X.M. Zhou, G. Liu, L.Y. He, J. Wang, A. Hsu, W.M. Li, and G. Wang. 2018. Chinese herbal medicine formula for acute asthma: A multi-center, randomized, double-blind, proof-of-concept trial. Respir Med 140: 42–49.

    Article  PubMed  Google Scholar 

  36. Wang, M.H., C. Chen, M.L. Yeh, and J.G. Lin. 2019. Using traditional Chinese medicine to relieve asthma symptoms: A systematic review and meta-analysis. Am J Chin Med 47 (8): 1659–1674.

    Article  PubMed  Google Scholar 

  37. Shergis, J.L., L. Wu, A.L. Zhang, X. Guo, C. Lu, and C.C. Xue. 2016. Herbal medicine for adults with asthma: A systematic review. J Asthma 53 (6): 650–659.

    Article  PubMed  Google Scholar 

  38. Harrison, B.C., M.L. Bell, D.L. Allen, W.C. Byrnes, and L.A. Leinwand. 2002. Skeletal muscle adaptations in response to voluntary wheel running in myosin heavy chain null mice. J Appl Physiol (1985) 92 (1): 313–322.

    Article  CAS  Google Scholar 

  39. Hirota, N., and J.G. Martin. 2013. Mechanisms of airway remodeling. Chest 144 (3): 1026–1032.

    Article  PubMed  Google Scholar 

  40. Vanaja, S.K., V.A. Rathinam, and K.A. Fitzgerald. 2015. Mechanisms of inflammasome activation: recent advances and novel insights. Trends Cell Biol 25 (5): 308–315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Schroder, K., and J. Tschopp. 2010. The inflammasomes. Cell 140 (6): 821–832.

    Article  CAS  PubMed  Google Scholar 

  42. Theofani, E., M. Semitekolou, I. Morianos, K. Samitas, and G. Xanthou. 2019. Targeting NLRP3 inflammasome activation in severe asthma. J Clin Med 8 (10).

  43. Shi, J., Y. Zhao, K. Wang, X. Shi, Y. Wang, H. Huang, Y. Zhuang, T. Cai, F. Wang, and F. Shao. 2015. Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature 526 (7575): 660–665.

    Article  CAS  PubMed  Google Scholar 

  44. Ding, J., and F. Shao. 2017. SnapShot: The noncanonical inflammasome. Cell 168 (3): 544–544 e541.

    Article  CAS  PubMed  Google Scholar 

  45. Pinkerton, J.W., R.Y. Kim, A.A.B. Robertson, J.A. Hirota, L.G. Wood, D.A. Knight, M.A. Cooper, L.A.J. O'Neill, J.C. Horvat, and P.M. Hansbro. 2017. Inflammasomes in the lung. Mol Immunol 86: 44–55.

    Article  CAS  PubMed  Google Scholar 

  46. Gao, J., S. Peng, X. Shan, G. Deng, L. Shen, J. Sun, C. Jiang, X. Yang, Z. Chang, X. Sun, F. Feng, L. Kong, Y. Gu, W. Guo, Q. Xu, and Y. Sun. 2019. Inhibition of AIM2 inflammasome-mediated pyroptosis by Andrographolide contributes to amelioration of radiation-induced lung inflammation and fibrosis. Cell Death Dis 10 (12): 957.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Cheng, K.T., S. Xiong, Z. Ye, Z. Hong, A. di, K.M. Tsang, X. Gao, S. An, M. Mittal, S.M. Vogel, E.A. Miao, J. Rehman, and A.B. Malik. 2017. Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest 127 (11): 4124–4135.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lamkanfi, M. 2011. Emerging inflammasome effector mechanisms. Nat Rev Immunol 11 (3): 213–220.

    Article  CAS  PubMed  Google Scholar 

  49. Kim, S.R., D.I. Kim, S.H. Kim, H. Lee, K.S. Lee, S.H. Cho, and Y.C. Lee. 2014. NLRP3 inflammasome activation by mitochondrial ROS in bronchial epithelial cells is required for allergic inflammation. Cell Death Dis 5: e1498.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Guo, M., F. An, H. Yu, X. Wei, M. Hong, and Y. Lu. 2017. Comparative effects of schisandrin A, B, and C on Propionibacterium acnes-induced, NLRP3 inflammasome activation-mediated IL-1beta secretion and pyroptosis. Biomed Pharmacother 96: 129–136.

    Article  CAS  PubMed  Google Scholar 

  51. Herbert, C., M. Sebesfi, Q.X. Zeng, B.G. Oliver, P.S. Foster, and R.K. Kumar. 2015. Using multiple online databases to help identify microRNAs regulating the airway epithelial cell response to a virus-like stimulus. Respirology 20 (8): 1206–1212.

    Article  PubMed  Google Scholar 

  52. Li, N., Y. He, and M.C. Li. 2015. Role of transient receptor potential canonical 1 in airway remodeling and effect of budesonide on its pulmonary expression in asthmatic guinea pigs. Nan Fang Yi Ke Da Xue Xue Bao 35 (10): 1374–1379.

    CAS  PubMed  Google Scholar 

  53. Li, N., Y. He, G. Yang, Q. Yu, and M. Li. 2019. Role of TRPC1 channels in pressure-mediated activation of airway remodeling. Respir Res 20 (1): 91.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Chang, J., J. Gao, L. Lou, H. Chu, P. Li, T. Chen, and F. Gao. 2020. Xanthatin alleviates airway inflammation in asthmatic mice by regulating the STAT3/NF-kappaB signaling pathway. Respir Physiol Neurobiol 281: 103491.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China [grant number 81804144], the Shanghai Municipal Key Clinical Specialty [grant number shslczdzk04102], the Young Talents Clinical Ability Improvement Project of Longhua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine [grant number RC-2020-01-01], and the National TCM Clinical Research Base of Longhua Hospital affiliated to Shanghai University of Traditional Chinese Medicine [grant number LYTD-90].

Author information

Authors and Affiliations

Authors

Contributions

Xiufeng Chen: Conceptualization, Methodology. Zhen Xiao: Data curation, Writing- Original draft preparation. Zhiyan Jiang: Investigation. Yonghong Jiang: Supervision. Wen Li: Software. Mingjing Wang: Writing- Reviewing and Editing.

Corresponding authors

Correspondence to Zhen Xiao or Zhiyan Jiang.

Ethics declarations

Ethics Approval and Consent to Participate

This study got the permission of the Ethical Committee of Longhua Hospital. All the animal experiments were implemented on the guide for the care and use of laboratory animals and on minimized animal number and the least pains.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Xiao, Z., Jiang, Z. et al. Schisandrin B Attenuates Airway Inflammation and Airway Remodeling in Asthma by Inhibiting NLRP3 Inflammasome Activation and Reducing Pyroptosis. Inflammation 44, 2217–2231 (2021). https://doi.org/10.1007/s10753-021-01494-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10753-021-01494-z

KEY WORDS

Navigation