Skip to main content
Log in

Rain Attenuation at 103 GHz in Millimeter Wave Ranges

  • Original Article
  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

We have conducted a millimeter wave propagation experiment at 103 GHz (2.9 mm) on a propagation path of 390 m. The results were compared with the rain attenuation calculations from the Marshall-Palmer, Best, Joss-Thomas-Waldvogel and Weibull distributions for raindrop-size. It has been shown that the Weibull distribution has a good agreement with the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. [1] Utsunomiya, T. and Sekine, M.: “Rain attenuation at millimeter and submillimeter wavelengths”, International Journal of Infrared and Millimeter Waves, 2005, 26, pp.905–920.

    Article  ADS  Google Scholar 

  2. [2] Marshall, J. S. and Palmer, W. M.: “The distribution of raindrops with size”, J.Meteor., 1948, 5, pp. 165–166.

    Google Scholar 

  3. [3] Best, A. C.: “The size distribution of raindrops”, Quart. J. Roy. Meteor. Soc., 1950, 76, pp.16–36.

    ADS  Google Scholar 

  4. [4] Joss, J., Thams, J. C. and Waldvogel, A.: “The variation of rain drop size distribution at Locarno”, Proc. Int. Conf. Cloud Phys., 1967, pp.369–373.

    Google Scholar 

  5. [5] Sekine, M. and Lind, G: “Rain attenuation of centimeter, millimeter and submillimeter radio waves”, Proceedings of the 12th European Microwave Conference, Helsinki, Finland, 1982, September, pp.584–589.

    Google Scholar 

  6. [6] Sekine, M. and Chen, C. D.: “Rain attenuation in terrestrial and satellite communications links”, Proceedings of. the 15th European Microwave Conference, Paris, France, 1985, pp.985–990.

    Google Scholar 

  7. [7] Sekine, M. and Lind, G.: “Raindrop shape limitations on clutter cancellation ratio using circular polarization”, IEEE Trans., 1983, AES-19, pp.631–633.

    Google Scholar 

  8. [8] Chen, C. D., Okamoto, Y. and Sekine, M.: “Cancellation of radar rain clutter using circular polarization”, Trans. of IECE of Japan, 1985, E68, pp.620–624.

    Google Scholar 

  9. [9] Sekine, M.: “The relationship between radar reflectivity and rainfall rate”, Trans. IECE Japan (section E), 1986, E69, pp.581–582.

    Google Scholar 

  10. [10] Sekine, M.: “Rain attenuation from various raindrop-size distributions”, Trans. IECE Japan (section E), 1986, E69, pp.711–712.

    Google Scholar 

  11. [11] Sekine, M., Chen, C. D. and Musha, T.: “Rain attenuation from log-normal and Weibull rain-drop distributions”, IEEE Trans. Antennas Propagat., 1987, AP-35, pp. 358–359.

    ADS  Google Scholar 

  12. [12] Sekine, M., Musha, T. and Chen, C. D.: “Rain attenuation from Weibull raindrop-size distribution”, Proc. of the 18th European Microwave Conf., Stockholm, Sweden, 1988, pp. 423–428.

    Google Scholar 

  13. [13] Sekine, M. and Chen, C. D.: “Inversion problem in rain attenuation calculations”, Proc. of the 1989 URSI International Symposium on Electromagnetic Theory, Stockholm, Sweden, 1989, pp. 23–25.

    Google Scholar 

  14. [14] Jiang, H., Sano, M. and Sekine, M.: “Radar reflectivity and rainfall rate relation from Weibull raindrop-size distribution”, IEICE Trans. Commun., 1996, E79-B, pp.797–800.

    Google Scholar 

  15. [15] Jiang, H., Sano, M. and Sekine, M.: “Weibull raindrop-size distribution and its application to rain attenuation”, IEE Proc-Microw. Antennas Propag., 1997, 144, pp.197–200.

    Google Scholar 

  16. [16] Sayama, S. and Sekine, M.: “Influence of raindrop-size distribution on the differential reflectivity up to submillimeter wavelength of 0.96 mm”, International journal of Infrared and Millimeter Waves, 2002, 23, pp.775–784.

    Google Scholar 

  17. [17] Ishii, S.: “Rain attenuation at millimeter wavelength of 1.33 mm”, International journal of Infrared and Millimeter Waves, 2004, 25, pp. 1495–1501.

    Article  ADS  Google Scholar 

  18. [18] Babkin, Y. S., Zimin, N. N., Izyumov, A. O., Iskhakov, I. A., Sokolov, A. V., Stroganov, L. I., Stroganov, Y. V., Sukhonin, Y. V. and Shabalin, G. Y.: “Measurement of attenuation in rain over 1 km path at a wavelength of 0.96 mm”, Rad. Eng. Elec. Phys., 1970, 15, pp.2164–2166.

    Google Scholar 

  19. [19] Van De Hulst, H. C.: Light Scattering by Small Particles, New York, Wiley 1957.

    Google Scholar 

  20. [20] Deirmendjian, R., Clasen, R. and Viezee, W.: “Mie scattering with complex index of refraction”, J. Opt. Soc. Am., 1961, 51, pp.620–633.

    Article  ADS  Google Scholar 

  21. [21] Ray, P. S.: “Broad complex refractive indices of ice and water”, App. Opt., 1972, 11, pp.1836–1844.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utsunomiya, T., Sekine, M. Rain Attenuation at 103 GHz in Millimeter Wave Ranges. Int J Infrared Milli Waves 26, 1651–1660 (2005). https://doi.org/10.1007/s10762-005-0038-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-0038-4

Keywords:

Navigation