Skip to main content
Log in

Investigation of Different Input-Matching Mechanisms Used in Wide-Band LNA Design

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

This paper analyzes different input-matching mechanisms used in designing the wide-band amplifiers in general, and the low noise amplifiers (LNA) in particular, and their corresponding noise impact. Among them, the most promising one is the reactive-feedback circuit configuration, which is a combination of high-frequency inductive feedback and low frequency capacitive feedback. In this paper the simulated result that both matched input impedance and low noise temperature T n can be achieved simultaneously over a wide bandwidth in the single-ended low noise amplifier is proved mathematically and is well interpreted. This understanding of reactive feedback is crucial for the future development of ultra-wide-band low-noise amplifiers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. [1] C.C. Chin, et al, “A low-noise 100 GHz sideband separating receiver,” Intl. J. IR & MM Waves, vol. 24, pp. 569–600, April 2004.

    Google Scholar 

  2. [2] R. Rice, M. Sumner, J. Zmuidzinas, R. Hu, H.G. Leduc, A.I. Harris, D. Miller, “SIS mixer design for a broadband millimeter spectrometer suitable for rapid line surveys and redshift determinations,” Proc. SPIE, vol. 4855, pp. 301–311, Feb. 2003.

    Google Scholar 

  3. [3] J. Yang, S. Huang, M. Ohishi, K. Miyazawa, R. Henneberger, “A 492 GHz submillimeterwave receiver,” Intl. J. IR & MM Waves, vol. 22, pp. 217–223, Feb. 2001.

    Google Scholar 

  4. [4] I.L. Fernandiz, J.D. Gallego, C. Diez, A. Barcia, J.M. Pintado, “Wide-band ultra low noise cryogenic InP IF amplifiers for the Herschel mission radiometers,” Proc. SPIE, vol. 4855, pp. 489–500, Feb. 2003.

    Google Scholar 

  5. [5] N. Wadefalk, et al., “Cryogenic Wide-Band Ultra-Low-Noise IF Amplifiers Operating at Ultra-Low DC Power,” IEEE Trans. Microwave Theory Tech., vol. 51, pp. 1705–1711, June 2003.

    Google Scholar 

  6. [6] S. Weinreb, D. L. Fenstermacher, R. W. Harris, “Ultra-low-noise 1.2- to 1.7-GHz cooled GaAsFET amplifiers,” IEEE Trans. Microwave Theory Tech., vol. 82, pp. 849–853, June 1982.

    Google Scholar 

  7. [7] R. Hu, “An 8–20 GHz LNA design and the analysis of its input matching mechanism,” IEEE Microwave and Wireless Components Letter, vol. 14, pp. 528–530, Nov. 2004.

    Google Scholar 

  8. [8] T.K. Nguyen, C.H. Kim, G.J. Ihm, M.S. Yang, S.G. Lee, “CM OS low-noise amplifier design optimization techniques,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1433–1442, May 2004.

    Google Scholar 

  9. [9] D. Lu, D. Rutledge, M. Kovacevic, J. Hacker, “A 24-GHz patch array with a power amplifier/low-noise amplifier MMIC,” Intl J. IR & M Waves, vol. 23, pp. 693–704, May 2002.

    Google Scholar 

  10. [10] G. Gonzalez, “Microwave transistor amplifier: analysis and design,” Prentice-Hall Inc. ISBN 0135816467, 1984.

    Google Scholar 

  11. [11] R. Hu, S. Weinreb, “A novel wide-band noise-parameter measurement method and its cryogenic application,” IEEE Trans. Microwave Theory Tech., vol. 52, pp. 1498–1507, May 2004.

    Google Scholar 

  12. [12] R. A. Minasian, “Simplified GaAs MESFET model to 10 GHz,” Electronic letter, pp. 549–551, Sep. 1977.

    Google Scholar 

  13. [13] M. Berroth, R. Bosch, “Broad-band determination of the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 38, pp. 891–895, July 1990.

    Google Scholar 

  14. [14] G. Dambrine, A. Cappy, F. Heliodore, E. Playez, “A new method for determining the FET small-signal equivalent circuit,” IEEE Trans. Microwave Theory Tech., vol. 36, pp. 1151–1159, July 1988.

    Google Scholar 

  15. [15] A. Eskandarian, S. Weinreb, “A note on experimental determination of small-signal equivalent circuit of millimeter-wave FETs,” IEEE Trans. Microwave Theory Tech., vol. 41, pp. 159–162, Jan. 1993.

    Google Scholar 

  16. [16] M. W. Pospieszalski, “Modeling of noise parameters of MESFET’s and MODFET’s and their frequency and temperature dependence,” IEEE Trans. Microwave Theory Tech., vol. 37, pp. 1340–1350, Sep. 1989.

    Google Scholar 

  17. [17] F. Danneville, H. Happy, G. Dambrine, J. M. Belquin, A. Cappy, “Microscopic noise modeling and macroscopic noise modeling: How good a connection,” IEEE Trans. Microwave Theory Tech., vol. 42, pp. 779–786, May 1994.

    Google Scholar 

  18. [18] J. H. Han, K. Lee, “A new extraction method for noise sources and correlation coefficient in MESFET,” IEEE Trans. Microwave Theory Tech., vol. 44, pp. 487–490, Mar. 1996.

    Google Scholar 

  19. [19] K. B. Niclas, W. T. Wilser, R. B. Gold, W. R. Hitchens, “The matched feedback amplifier: ultra-band microwave amplification with GaAs MESFET’s,” IEEE Trans. Microwave Theory Tech., vol. 28, pp. 285–294, April 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, R., Yang, M. Investigation of Different Input-Matching Mechanisms Used in Wide-Band LNA Design. Int J Infrared Milli Waves 26, 221–245 (2005). https://doi.org/10.1007/s10762-005-3002-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-3002-4

Keywords:

Navigation