Skip to main content

Advertisement

Log in

High Power Gyro-Devices for Plasma Heating and Other Applications

  • Review Paper
  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Gyrotron oscillators are mainly used as high power millimeter wave sources for electron cyclotron resonance heating (ECRH), electron cyclotron current drive (ECCD), stability control and diagnostics of magnetically confined plasmas for generation of energy by controlled thermonuclear fusion. The maximum pulse length of commercially available 1 MW gyrotrons employing synthetic diamond output windows is 5 s at 110 GHz (CPI and JAERI-TOSHIBA), 12 s at 140 GHz (FZK-CRPP-CEA-TED) and 10 s at 170 GHz (GYCOM and JAERI-TOSHIBA), with efficiencies slightly above 30%. Total efficiencies of 45–50 % have been obtained using single-stage depressed collectors (SDC). The energy world record of 160 MJ (0.89 MW at 180 s pulse length and 140 GHz) at power levels higher than 0.8 MW has been achieved by the European FZK-CRPP-CEA-TED collaboration at FZK. Operation at the 1st and the 2nd harmonic of the EC frequency enables gyrotrons to act as medium power step-tunable mm- and sub-mm wave sources in the frequency range from 38 GHz (fundamental) to 889 GHz (2nd harmonic) for plasma diagnostics, EC plasma discharges for generation of multi-charged ions, high-frequency broadband electron paramagnetic resonance (EPR) spectroscopy and medical applications. Gyrotrons have also been successfully used in materials processing. Such technological applications require gyrotrons with the following parameters: f ≥ 24 GHz, Pout = 4–50 kW, CW, η ≥ 30%. Future applications which await the development of novel high-power gyro-amplifiers include high resolution radar ranging and imaging in atmospheric and planetary science as well as deep-space and specialized satellite communications and RF drivers for next-generation high-gradient linear accelerators (supercolliders). The present paper reviews the state-of-the-art and future prospects of gyro-devices and their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. [1] Granatstein, V.L., I. Alexeff, eds., “High-power microwave sources”, Artech House, Boston, London (1987).

    Google Scholar 

  2. [2] Benford, J., J. Swegle, “High-power microwave sources”, Artech House, Boston, London (1992).

    Google Scholar 

  3. [3] Edgcombe, C.J., ed., “Gyrotron oscillators - their principles and practice”, Taylor & Francis, London (1993).

    Google Scholar 

  4. [4] Kartikeyan, M.V., E. Borie, M.K.A. Thumm, “Gyrotrons - High power microwave and millimeter wave technology”, Springer, Berlin (2004).

    Google Scholar 

  5. [5] Nusinovich, G., “Introduction to the physics of gyrotrons”, The Johns Hopkins University Press, Baltimore and London (2004).

    Google Scholar 

  6. [6] Goldenberg, A.L., G.G. Denisov, V.E. Zapevalov, A.G. Litvak, V.A. Flyagin, Radiophys. and Quantum Electronics, 39, 423–446 (1996).

    Google Scholar 

  7. [7] Gold, S.H., G.S. Nusinovich, Rev. Scientific Instr., 68, 3945–3974 (1997).

    Google Scholar 

  8. [8] Granatstein, V.L., B. Levush, B.G. Danly, R.K. Parker, IEEE Trans. on Plasma Science, PS-25, 1322–1335 (1997).

    Google Scholar 

  9. [9] Petelin, M.I., IEEE Trans. on Plasma Science, PS-27, 294–302 (1999).

    Google Scholar 

  10. [10] Felch, K.L., B.G. Danly, H.R. Jory, K.E. Kreischer, W. Lawson, B. Levush, R.J. Temkin, Proc. of the IEEE, 87, 752–781 (1999).

    Google Scholar 

  11. [11] Thumm, M., Nucl. Instr. Methods Phys. Res. A482, 186–194 (2002).

    Google Scholar 

  12. [12] Chu, K.R., Rev. Mod. Phys., 76, 489–540 (2004).

    Google Scholar 

  13. [13] Gapanov-Grekhov, A.V., V.L. Granatstein, eds., “Applications of high-power microwaves”, Artech House, Boston, London (1994).

    Google Scholar 

  14. [14] Thumm, M., in “Generation and Application of high power microwaves”, eds. R.A. Cairns and A.D.R. Phelps, SUSSP 48, Inst. of Physics Publishing, Bristol, Philadelphia, pp. 305–323 (1997).

    Google Scholar 

  15. [15] Thumm, M., Int. J. infrared and Millimeter Waves, 22, 377–386 (2001).

    Google Scholar 

  16. [16] Felch, K., H. Huey, H. Jory, J. Fusion Energy, 9, 59–75 (1990).

    Google Scholar 

  17. [17] Thumm, M., Fusion Engineering and Design, 66–68, 69–90 (2002).

    Google Scholar 

  18. [18] Thumm, M., “State-of-the-Art of Gyro-Devices and Free Electron Masers, Update 2004, Report FZKA 7097, Forschungszentrum Karlsruhe (2005).

  19. [19] Flyagin, V.A., A.V. Gaponov, M.I. Petelin, V.K. Yulpatov, IEEE Trans. Microwave Theory and Techniques, MTT-25, 514–521 (1977).

    Google Scholar 

  20. [20] Luce, T.C., IEEE Trans. on Plasma Science, PS-30, 734–754 (2002).

    Google Scholar 

  21. [21] Erckmann, V., G. Dammertz, D. Dorst, L. Empacher, W. Förster, G. Gantenbein, T. Geist, W. Kasparek, H.P. Laqua, G.A. Müller, M. Thumm, M. Weissgerber, H. Wobig, IEEE Trans. on Plasma Science, PS-27, 538–546 (1999).

    Google Scholar 

  22. [22] Thumm, M.K., W. Kasparek, IEEE Trans. on Plasma Science, PS-30, 755–786 (2002).

    Google Scholar 

  23. [23] Thumm, M, Diamond Related Mater. 10, 1692–1699 (2001).

    Google Scholar 

  24. [24] Denisov, G.G., V.E. Zapevalov, A.G. Litvak, V.E. Myasnikov, Radio-physics and Quantum Electronics, 46, 757–768 (2003).

    Google Scholar 

  25. [25] K. Sakamoto, A. Kasugai, Y. Ikeda, K. Hayashi, K. Takahasi, S. Moriyama, M. Seki, T. Kariya, Y. Mitsunaka, T. Fujii, T. Imai, Nucl. Fusion, 43, 729–737 (2003).

    Google Scholar 

  26. [26] Alberti, S., A. Arnold, E. Borie, G. Dammertz, V. Erckmann, P.Garin, E. Giguet, S. Illy, G. LeCloarec, Y. LeGoff, R. Magne, G. Michel, B. Piosczyk, M. Thumm, C. Tran, M.Q. Tran, D. Wagner, Fusion Engineering and Design, 53, 387–397 (2001).

    Google Scholar 

  27. [27] Dammertz, G., S. Alberti, A. Arnold, E. Borie, V. Erckmann, G. Gantenbein, E. Giguet, R. Heidinger, J.P. Hogge, S. Illy, W. Kasparek, K. Koppenburg, M. Kuntze, H.P. Laqua, G. LeCloarec, Y. LeGoff, W. Leonhardt, C. Lievin, R. Magne, G. Michel, G. Müller, G. Neffe, B. Piosczyk, M. Schmid, K. Schwörer, M.K. Thumm, M.Q. Tran, IEEE Trans. on Plasma Science, PS-30, 808–818 (2002).

    Google Scholar 

  28. [28] Dammertz, G., S. Alberti, D. Fasel, E. Giguet, K. Koppenburg, M. Kuntze, F. Legrand, W. Leonhardt, C. Lievin, G. Müller, G. Neffe, B. Piosczyk, M. Schmid, A. Sterk, M. Thumm, M.Q. Tran, A.G.A. Verhoeven, Fusion Engineering and Design, 66–68, 497–502 (2003).

    Google Scholar 

  29. [29] Iatrou, C.T., O. Braz, G. Dammertz, S. Kern, M. Kuntze, B. Pioszyk, M. Thumm, IEEE Trans. on Plasma Sciences, PS-25, 470–479 (1997).

    Google Scholar 

  30. [30] Zapevalov, V.E., A.B. Pavelyev, V.I. Khizhnyak, Radiophysics Quantum Electronics, 43, 671–674 (2000).

    Google Scholar 

  31. [31] Piosczyk, B., A. Arnold, G. Dammertz, O. Dumbrajs, M. Kuntze, M.K. Thumm, IEEE Trans. on Plasma Science, PS-30, 819–827 (2002).

    Google Scholar 

  32. [32] Thumm, M., A. Arnold, E. Borie, O. Braz, G. Dammertz, O. Dumbrajs, K. Koppenburg, M. Kuntze, G. Michel, B. Piosczyk, Fus. Eng. Design, 53, 407–421 (2001).

    Google Scholar 

  33. [33] Zapevalov, V.E, A.A. Bogdashov, G.G. Denisov, A.N. Kuftin, V.K. Lygin, M.A. Moiseev, A.V. Chirkov, Radiophysics and Quantum Electronics, 47, 396–404 (2004).

    Google Scholar 

  34. [34] Leuterer, F., K. Kirov, F. Monaco, M. Münich, H. Schütz, F. Ryter, D. Wagner, R. Wilhelm, H. Zohm, T. Franke, K. Voigt, M. Thumm, R. Heidinger, G. Dammertz, K. Koppenburg, G. Gantenbein, H. Hailer, W. Kasparek, G.A. Müller, A. Bogdashov, G. Denisov, V. Kurbatov, A. Kuftin, A. Litvak, S. Malygin, E. Tai, V. Zapevalov, Fusion Engineering and Design, 66–68, 537–542 (2003).

    Google Scholar 

  35. [35] Idehara, T., I. Ogawa, K. Kawahata, H. Iguchi, K. Matsuoka, Int. J. of Infrared and Millimeter Waves, 25, 1567–1579 (2004).

    Google Scholar 

  36. [36] Idehara, T., I. Ogawa, S. Mitsudo, M. Pereyaslavets, N. Nishida, K. Yoshida, IEEE Trans. Plasma Science, 27, 340–354 (1999).

    Google Scholar 

  37. [37] Flyagin, V.A., A.N. Kuftin, A.G. Luchinin, G.S. Nusinovich, T.B. Pankratova, V.E. Zapevalov, Proc. Joint IAEA Techn. Committee Meeting on ECE and ECRH (EC-7), Hefei, P.R. China, 355–372 (1989).

    Google Scholar 

  38. [38] Gloubev, S.V., Yu. Ya. Platanov, S.V. Razin, V.G. Zorin, J. X-Ray Science and Technology, 6, 244–248 (1996).

    Google Scholar 

  39. [39] Golubev, S.V., S.V. Razin, V.G. Zorin, Rev. Scientific Instruments, 69, 634–636 (1998).

    Google Scholar 

  40. [40] Feher, L., M. Thumm, Proc. SPIE - 15th Annual Int. Symp. on Aerospace/Defense Sensing, Simulation and Controls, Intense Microwave Pulses VIII, Orlando, USA, SPIE Vol. 4371, pp. 99–110 (2001).

  41. [41] Samsonov, S.V., G.G. Denisov, V.L. Bratman, A.A. Bogdashov, M.Yu. Glyavin, A.G. Luchinin, V.K. Lygin, MK. Thumm, IEEE Trans. on Plasma Science, PS-32, 884–889 (2004).

    Google Scholar 

  42. [42] Tatsukawa, T., T. Maeda, H. Sasai, T. Idehara, M. Mekata, T. Saito, T. Kanemaki, Int. J. Infrared and Millimeter Waves, 16, 293–305 (1995).

    Google Scholar 

  43. [43] Mitsudo, S., T. Aripin, T. Shirai, T. Matsuda, T. Kanemaki, T. Idehara, Int. J. of Infrared and Millimeter Waves, 21, 661–676 (2000).

    Google Scholar 

  44. [44] Gerfen, G.J., L.R. Becerra, D.A. Hall, R.G. Griffin, R.J. Temkin, D.J. Singel, J. Chem. Phys., 102, 9494–9497 (1995).

    Google Scholar 

  45. [45] Petelin, M.I., G. Caryotakis, A.A. Yunakovsky, CP 474, High Energy Density Microwaves, ed. R.M. Phillips, The American Institute of Physics, pp. 304–315 (1999).

    Google Scholar 

  46. [46] Blank, M., K. Felch, B.G. James, P. Borchard, P. Cahalan, T.S. Chu, H. Jory, B.G. Danly, B. Levush, J.P., Calame, K.T. Nguyen, D.E. Pershing, IEEE Trans. on Plasma Science, PS-30, 865–875 (2002).

    Google Scholar 

  47. [47] Chu, K.R., IEEE Trans. on Plasma Science, PS-30, 903–908 (2002).

    Google Scholar 

  48. [48] Denisov, G.G., V.L. Bratman, A.D.R. Phelps, S.V. Samsonov, IEEE Trans. on Plasma Science, PS-26, 508–518 (1998).

    Google Scholar 

  49. [49] Granatstein, V.L., W. Lawson, IEEE Trans. on Plasma Science, PS-24, 648–665 (1996).

    Google Scholar 

  50. [50] Tatsukawa, T., A. Doi, M. Teranaka, H. Takashima, F. Goda, T. Idehara, I. Ogawa, S. Mitsudo, T. Kanemaki, Int. J. of Infrared and Millimeter Waves, 21, 1155–1167 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thumm, M. High Power Gyro-Devices for Plasma Heating and Other Applications. Int J Infrared Milli Waves 26, 483–503 (2005). https://doi.org/10.1007/s10762-005-4068-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-4068-8

Key words:

Navigation