Skip to main content
Log in

Rain Attenuation at Millimeter and Submillimeter Wavelengths

  • Original Article
  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

The rain attenuation was calculated by using the Marshall-Palmer, Best, Joss-Thomas-Waldvogel and Weibull distributions for raindrop-size. The results were compared with the recent measurements from 8 to 312.5 GHz at the rain rate R = 50mm/hr. Especially, the Weibull distribution has a good agreement with the measurements at 312.5 GHz (0.96 mm) in the submillimeter wavelength. Specific attenuation values from 1 to 1000 GHz were calculated for a rain temperature of −10°C, 0°C and 20°C by using the Weibull distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. [1] Laws, J. O. and Parsons, D. A.: “The relation of raindrop-size to intensity”, Trans. Amer. Geophys. Union, 24, pp.452–460 (1943).

    Google Scholar 

  2. [2] Medhurst, R. G.: “Rainfall attenuation of centimeter waves: Comparison of theory and measurement”, Proc. of IEEE, AP-13, pp.550–564 (1965).

    Google Scholar 

  3. [3] Gunn, R. and Kinzer, G. D.: “The terminal velocity of fall for water droplets in stagnant air”, J. Meteor., 6, pp.243–248 (1949).

    Google Scholar 

  4. [4] Olsen, R. L., Rogers, D. V. and Hodge, D. B.: “The aRb relation in the calculation of rain attenuation”, Proc. IEEE, AP-26, pp.318–329 (1978).

    Google Scholar 

  5. [5] Sander, J.: “Rain attenuation of millimeter waves at λ=5.77, 3.3 and 2 mm”, IEEE Trans., AP-23, pp.213–220 (1975).

    Google Scholar 

  6. [6] Marshall, J. S. and Palmer, W. M.: “The distribution of raindrops with size”, J.Meteor., 5, pp.165–166 (1948).

    Google Scholar 

  7. [7] Best, A. C.: “The size distribution of raindrops”, Quart. J. Roy. Meteor. Soc., 76, pp.16–36 (1950).

    Google Scholar 

  8. [8] Joss, J., Thams, J. C. and Waldvogel, A.: “The variation of rain drop size distribution at Locarno”, Proc. Int. Conf. Cloud Phys., pp.369–373 (1967).

    Google Scholar 

  9. [9] Wickerts, S.: “Drop size distribution in rain”, FOA (National Defense Research Institute) Report, C20438-EI(E2), January (1982).

    Google Scholar 

  10. [10] Sekine, M. and Lind, G.: “Rain attenuation of centimeter, millimeter and sumillimeter radio waves”, Proceedings of the 12th European Microwave Conference, Helsinki, Finland, September, pp.584–589 (1982).

  11. [11] Sekine, M. and Chen, C. D.: “Rain attenuation in terrestrial and satellite communications links”, Proceedings of the 15th European Microwave Conference, Paris, France, pp.985–990 (1985).

    Google Scholar 

  12. [12] Sekine, M.: “The relationship between radar reflectivity and rainfall rate”, Trans. IECE Japan (section E), 1986, E69, pp.581–582.

    Google Scholar 

  13. [13] Sekine, M.: “Rain attenuation from various raindrop-size distributions”, Trans. IECE Japan (section E), 1986, E69, pp.711–712.

    Google Scholar 

  14. [14] Sekine, M., Chen, C. D. and Musha, T.: “Rain attenuation from log-normal and Weibull rain-drop distributions”, IEEE Trans. Antennas Propagat., 1987, AP-35, pp. 358–359.

    Google Scholar 

  15. [15] Sekine, M., Musha, T. and Chen, C. D.: “Rain attenuation from Weibull raindrop-size distribution”, Proc. of the 18th European Microwave Conf., Stockholm, Sweden, 1988, pp. 423–428.

    Google Scholar 

  16. [16] Sekine, M. and Chen, C. D.: “Inversion problem in rain attenuation calculations”, Proc. of the 1989 URSI International Symposium on Electromagnetic Theory, Stockholm, Sweden, 1989, pp. 23–25.

    Google Scholar 

  17. [17] Jiang, H., Sano, M. and Sekine, M.: “Radar reflectivity and rainfall rate relation from Weibull raindrop-size distribution”, IEICE Trans. Commun., 1996, E79-B, pp.797–800.

    Google Scholar 

  18. [18] Jiang, H., Sano, M. and Sekine, M.: “Weibull raindrop-size distribution and its application to rain attenuation”, IEE Proc-Microw. Antennas Propag., 1997, 144, pp.197–200.

    Google Scholar 

  19. [19] Sayama, S. and Sekine, M.: “Influence of raindrop-size distribution on the differential reflectivity up to submillimeter wavelength of 0.96 mm”, International journal of Infrared and Millimeter Waves, 2002, 23, pp.775–784.

    Google Scholar 

  20. [20] Ishii, S.: “Rain attenuation at millimeter wavelength of 1.33 mm”, International journal of Infrared and Millimeter Waves, 2004, 25, pp.1495–1501.

    Google Scholar 

  21. [21] Sekine, M. and Lind, G.: “Raindrop shape limitations on clutter cancellation ratio using circular polarization”, IEEE Trans., AES-19, pp.631–633 (1983).

    Google Scholar 

  22. [22] Chen, C. D., Okamoto, Y. and Sekine, M.: “Cancellation of radar rain clutter using circular polarization”, Trans. of IECE of Japan, E68, 9, pp.620–624 (1985).

    Google Scholar 

  23. [23] Litvinov, I. V.: “On the distribution function of particle of rainfall”, Izvestia AN SSSR, Geophy. Ser. 6, pp.838–839 (1957).

    Google Scholar 

  24. [24] Fujiwara, M.: “Raindrop size distributions with rainfall types and weather conditions”, Res. Rep. 8, I11, State Water Survey (1961).

    Google Scholar 

  25. [25] Deirmendjian, D.: Electromagnetic Scattering on Spherical Polydispersions, New York, Elsevier, 1969.

    Google Scholar 

  26. [26] Sekhon, R. S. and Srivastava, R. C.: “Doppler radar observations of dropsize distributions in a thunderstorm”, J. Atmos. Sci., 28, pp.983–994 (1971).

    Google Scholar 

  27. [27] Fang, D. J. and Chem, C. H.: “Propagation of centimeter/millimeter waves along a slant path through precipitation”, Radio Science, 17, 5, pp.989–1005 (1982).

    Google Scholar 

  28. [28] Ajayi, G. O. and Olsen, R. L.: “Measurements and analysis of raindrop size distribution in south western Nigeria”, Proc. URSI Commission F 1983 Symposium, Louvain, Belgium, pp. 173–184 (1983).

    Google Scholar 

  29. [29] Ihara, T., Furuhama, Y. and Manabe, T.: “Inference of raindrop size distribution from rain attenuation statistics at 12, 35, and 82 GHz”, Trans. of IECE of Japan, E67, 4, pp.211–217 (1984).

    Google Scholar 

  30. [30] Rozenberg, V. I.: “Radar characteristics of rain in submillimeter range”, Radio Eng. And Elect. Phys., 15, pp.2175–2163 (1970).

    Google Scholar 

  31. [31] Ippolito, L. J.: “Radio propagation for space communications systems”, Proc. IEEE, 69, pp.697–727 (1981).

    Google Scholar 

  32. [32] Van De Hulst, H. C.: Light Scattering by Small Particles, New York, Wiley 1957.

    Google Scholar 

  33. [33] Deirmendjian, R., Clasen, R. and Viezee, W.: “Mie scattering with complex index of refraction”, J. Opt. Soc. Am., 51, pp.620–633 (1961).

    Google Scholar 

  34. [34] Ray, P. S.: “Broad complex refractive indices of ice and water”, App. Opt., 11, pp.1836–1844 (1972).

    Google Scholar 

  35. [35] De Bettencourt, J. T.: “Statistics of millimeter wave rainfall attenuation”, J. Rech. Atmos., 8, pp.98–112 (1974).

    Google Scholar 

  36. [36] Babkin, Y. S., Zimin, N. N., Izyumov, A. O., Iskhakov, I. A., Sokolov, A. V., Stroganov, L. I., Stroganov, Y. V., Sukhonin, Y. V. and Shabalin, G. Y.: “Measurement of attenuation in rain over 1 km path at a wavelength of 0.96 mm”, Rad. Eng. Elec. Phys.,15, pp.2164–2166 (1970).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Utsunomiya, T., Sekine, M. Rain Attenuation at Millimeter and Submillimeter Wavelengths. Int J Infrared Milli Waves 26, 905–920 (2005). https://doi.org/10.1007/s10762-005-5662-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-5662-5

Keywords:

Navigation