Skip to main content
Log in

Analysis and Simulation of Reentrant Cylindrical Cavities

  • Original Article
  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Of applications ranging from electron spin resonance to detection of gravitational waves, reentrant circular cylindrical cavities are analyzed on the basis of a mathematically simple formalism extending the range of validity of expressions for resonant frequency and quality factor obtained from lumped RLC constant models. Several cavity configurations in the 1 – 3 GHz range are analytically examined in excellent agreement with frequencies obtained from Superfish code.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. [1] W. W. Hansen, “On the resonant frequency of closed concentric lines”, J. Appl. Phys., vol. 10, pp. 38–45, 1939.

    Article  Google Scholar 

  2. [2] E. L. Ginzton, and E. J. Nalos, “Shunt impedance of klystron cavities”, IRE Trans. Microwave Theory and Tech., vol. 3, no. 5, pp. 4–7, Oct. 1955.

    Article  Google Scholar 

  3. [3] S. Humphries, Jr., Principles of Charged Particle Accelerators, New York: Wiley, 1986.

    Google Scholar 

  4. [4] A. J. C. Vieira, P. K. Herczfeld, A. Rosen, M. Ermold, E. E. Funk, ”W. D. Jennison, and K. J. Wiliams, “A mode-locked microship laser optical transmitter for fiber radio”, IEEE. Trans. Microwave Theory Tech., vol. 49, no. 10, pp. 1882–1887, Oct. 2001.

    Article  Google Scholar 

  5. [5] M. Migliuolo, and G. Carter, “Novel tunable reentrant microwave cavity”, Rev. Sci. Instrum., vol. 59, no. 2, pp. 388–390, Feb. 1988.

    Article  Google Scholar 

  6. [6] F. Thompson, A. D. Haigh, B. M. Billon, and A. A. P. Gibson, “Analysis and design of a re-entrant microwave cavity for the characterization of single wheat grain kernels”, IEE Proc. Sci. Meas. Technol., vol. 150, no. 3, pp. 113–117, May 2003.

    Article  Google Scholar 

  7. [7] W. Xi, W. R. Tinga, W. A. G. Voss, and B. Q. Tian, “New results for coaxial re-entrant cavity with partially dielectric filled gap”, IEEE. Trans. Microwave Theory Tech., vol. 40, no. 4, pp. 747–752, April 1992.

    Article  Google Scholar 

  8. [8] F. Bordoni, L. Yinghua, B. Spatori, F. Felicangeli, F. Vasarelli, G. Cardarilli, B. Antonini, and R. Scrimaglio, “A microwave scanning surface harmonic microscope using a re-entrant resonant cavity”, Meas. Sci. Technol. vol. 6, no. 8, pp. 1208–1214, August 1995.

    Article  Google Scholar 

  9. [9] M. Giordano, F. Momo, and A. Sotgiu, “On the design of a re-entrant square cavity as resonator for low-frequency ESR spectroscopy”, J. Phys. E: Sci. Instrum., vol. 16, no.8, pp. 774–779, 1983.

    Article  Google Scholar 

  10. [10] G. P. Singh, M. Von Schickfus, and H. Maletta, “Spin-freezing process in spin-glasses”, Phys. Rev. Lett., vol. 51, no. 19, pp. 1791–1794, Nov. 1983.

    Article  Google Scholar 

  11. [11] H. S. Kim, and S. Ahn, “Numerical analysis of the C-band klystrode with annular electron beam”, Int. J. Infrared Millimeter Waves, vol. 21, no. 1, pp. 11–20, Jan. 2000.

    Article  Google Scholar 

  12. [12] J. J. Barroso, P. J. Castro, O. D. Aguiar, and L. A. Carneiro, “Reentrant cavities as electromechanical transducers”, Rev. Sci. Instrum., vol. 75, no. 4, pp. 1000–1005, April, 2004.

    Google Scholar 

  13. [13] J. C. Slater, Microwave Electronics, New York: Dover, 1969, pp.232–237.

    Google Scholar 

  14. [14] E. Rivier and M. Vergé-Lapisardi, “Lumped parameters of a reentering cylindrical cavity”, IEEE Trans. Microwave Theory Tech., vol. 19, no. 3, pp. 309–214, March 1971.

    Article  Google Scholar 

  15. [15] H. E. Green, “The resonant frequency of a narrow-gap cylindrical cavity”, IEEE Trans. Microwave Theory Tech., vol. 25, no. 3, pp. 233–234, March 1977.

    Article  Google Scholar 

  16. [16] K. Fujisawa, “General treatment of klystron resonant cavities”, IRE Trans. Microwave Theory Tech., vol. 6, pp. 344–358, October 1958.

    Article  Google Scholar 

  17. [17] K. Uenakada, “Equivalent circuit of reentrant cavity”, IEEE Trans. Microwave Theory Tech., vol. 21, no. 1, pp. 48–51, January 1971.

    Article  Google Scholar 

  18. [18] A. G. Williamson, “120 The resonant frequency and tuning characteristics of a narrow-gap reentrant cylindrical cavity”, IEEE. Trans. Microwave Theory Tech., vol. 24, no. 4, pp. 182–187, April 1976.

    Article  Google Scholar 

  19. [19] M. Jaworski, “On the resonant frequency of a reentrant cylindrical cavity”, IEEE Trans. Microwave Theory Tech., vol. 26, no. 6, pp. 256–260, April 1978.

    Article  Google Scholar 

  20. [20] J. H. Billen and L. M. Young, “Poisson/Superfish”, Rep. LA-UR-96-1934, Los Alamos Nat. Lab., NM, 1996.

  21. [21] O. D. Aguiar, L. A. Andrade, J. J. Barroso, L. Camargo Filho, L. A. Carneiro, C. S. Castro, P. J. Castro, C. A. Costa, K. M. F. Costa, J. C. N. de Araujo, A. U. de Lucena, W. de Paula, E. C. de Rey Neto, S. T. de Souza, A. C. Fauth, C. Frajuca, G. Frossati, S. R. Furtado, L. C. Lima, N. S. Magalhães, R. M. Marinho Jr., E. S. Matos, J. L. Melo, O. D. Miranda, N. F. Oliveira Jr., B. W. Paleo, M. Remy, K. L. Ribeiro, C. Stellati, W. F. Velloso Jr., J. Weber, “The Brazilian spherical detector: progress and plans”, Classical and Quantum Gravity, vol. 21(5), pp. S457–S463, March 2004.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barroso, J., Castro, P., Leite Neto, J. et al. Analysis and Simulation of Reentrant Cylindrical Cavities. Int J Infrared Milli Waves 26, 1071–1083 (2005). https://doi.org/10.1007/s10762-005-7268-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-7268-3

Keywords:

Navigation