Skip to main content
Log in

Terahertz BWO-Spectrosopy

  • Review Paper
  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

Modern Terahertz-subTerahertz (THz-subTHz) spectrometers, based on continuously frequency-tunable coherent sources of radiation, the backward-wave oscillators (BWOs), are described which cover the frequencies v = 1 cm−1 − 50 cm−1 (0.03 − 1.5 THz) and allow for measurements at temperatures 2 − 1000 K, also in magnetic fields. They allow for direct determination of spectra of any optical parameter of a material at millimeter-submillimeter wavelengths, the domain where infrared or microwave spectrometers encounter serious methodological difficulties. We report on new technical abilities of the quasioptical BWO-spectrometers and discuss their main components. We demonstrate abilities of the THz-subTHz BWO-spectroscopy by presenting some latest results on measurements of dielectric, conducting, superconducting and magnetic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. [1] Kozlov G.V., Volkov A.A. Coherent Source Submillimeter Wave Spectroscopy. Topics in Applied Physics, 74, p.51, ed. G.Gruner, (Springer-Verlag, 1998).

    Google Scholar 

  2. [2] M.Born, E.Wolf. Principles of Optics, 6th ed. (Cambridge University Press, Cambridge 1999).

    Google Scholar 

  3. [3] A.Schwartz et al. Resonant techniques for studying the complex electrodynamic response of conducting solids in the millimeter and submillimeter wave spectral range. Rev. Sci. Instrum., 66, 2943 (1995).

    Article  Google Scholar 

  4. [4] S.Mair et al. Spatial and spectral behavior of the optical near field studied by a terahertz near-field spectrometer. Appl. Phys. Lett. 84, 1219 (2004).

    Article  Google Scholar 

  5. [5] D. Van der Marel, A.Tsvetkov. Transverse optical plasmons in ordered and disordered Josephson-coupled superconducting multilayers. Czech. J. Phys. 46, 3165 (1996).

    Google Scholar 

  6. [6] T.Kakeshita et al. Transverse Josephson plasma mode in T* cuprate superconductors. Phys. Rev. Lett. 86, 4140 (2001).

    Article  PubMed  Google Scholar 

  7. [7] V.Tikhonov, A.Volkov. Separation of water into its ortho and para isomers. Science 296, 2363 (2002).

    Article  PubMed  Google Scholar 

  8. [8] A. Balbashov et al. Submillimeter spectroscopy of antiferromagnetic dielectrics: Rare-earth orthoferrites. In “High Frequency Processes in Magnetic Materials”, ed. G.Srinivasan, A.Slavin (World Scientific, Singapore 1995); J.van Slageren et al. Frequency-domain magnetic resonance spectroscopy of molecular magnetic materials. Phys. Chem. Chem. Phys. 5, 3837 (2003).

    Google Scholar 

  9. [9] M.Dressel et al. Direct Observation of Quantum Tunneling and Relaxation in Mn12ac. Phys. Rev. B 67, 060405 (2003).

    Article  Google Scholar 

  10. [10] O.Ryabova et al. Unpublished.

  11. [11] B.Gorshunov et al. Measurement of electrodynamic parameters of superconducting films in far-infrared and submillimeter frequency ranges. Int. J. IRMMW 14, 683 (1993).

    Google Scholar 

  12. [12] E.O.Wollan and W.C.Koehler, Neutron diffraction study of the magnetic properties of the series of perovskite-type compounds [(1-x)La, xCa]Mno3. Phys.Rev., 100, 545 (1955).

    Article  Google Scholar 

  13. [13] P.-G. de Gennes, Effects of double exchange in magnetic crystals. Phys. Rev., 118, 141 (1960)

    Article  Google Scholar 

  14. [14] E. Dagotto, et al., Colossal magnetoresistant materials: The key role of phase separation. Phys. Rep., 344, 1 (2001).

    Article  Google Scholar 

  15. [15] A.A.Mukhin, et al., Antiferromagnetic resonsnce in the canted phase of La1-xCaxMnO3: experimental evidence against electronic phase separation. Europhys. Lett., 49, 514 (2000).

    Article  Google Scholar 

  16. [16] A.Pimenov, et al., High-field antiferromagnetic resonance in single-crystalline La0.95Sr0.05MnO3: Experimental evidence for the existence of a canted magnetic structure. Phys. Rev. B, 62, 5685 (2000).

    Article  Google Scholar 

  17. [17] D.Ivannikov, et al., High-field ESR spectroscopy of the spin dynamics in La1-xCaxMnO3 (x<0.175). Phys. Rev. B, 65, 214422 (2002).

    Article  Google Scholar 

  18. [18] J.R.Friedman et al., Macroscopic measurements of resonant magnetization tunneling in high-spin molecules. Phys. Rev. Lett. 76, 3830 (1996)

    Article  PubMed  Google Scholar 

  19. [19] A.A.Mukhin, et al., Submillimeter spectroscopy of Mn12 magnetic cluster. Europhys. Lett., 44, 778 (1998).

    Article  Google Scholar 

  20. [20] A.A. Mukhin, et al., Submillimeter spectroscopy of electronic transitions and macroscopic quantum tunneling of magnetization in molecular nanocluster. Physics ] Uspekhi, 34, 1306 (2002).

    Google Scholar 

  21. [21] S.Vontragool et al., Asymmetric lineshape due to inhomogeneous broadening of the crystal-field transitions in Mn12 acetate single crystals. Phys. Rev. B, 69, 104410 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gorshunov, B., Volkov, A., Spektor, I. et al. Terahertz BWO-Spectrosopy. Int J Infrared Milli Waves 26, 1217–1240 (2005). https://doi.org/10.1007/s10762-005-7600-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-7600-y

Keywords:

Navigation