Skip to main content
Log in

Conceptual Design Study of a Novel Gyrotron for NMR/DNP Spectroscopy

  • Review Paper
  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

In this paper we present some initial results from a conceptual design study focused on the development of a novel frequency tunable gyrotron for nuclear magnetic resonance (NMR) spectroscopy with signal enhancement based on the utilization of high field radiation and dynamic nuclear polarization (DNP) technique. The first variants of both the electron optical system and the resonant cavity which have been designed aiming continuous frequency tunability in a broad frequency band are presented and discussed. The selected method for frequency tunability is based on the excitation of higher order axial modes and smooth transition between them. It was selected after a critical examination of the known theoretical and practical results related to the frequency control in gyrotrons. It is believed that the current conceptual design is an appropriate basis for development of the next (optimized) design which will include also a detailed design of other components (mode converter, output window etc.) and magnetic circuit (superconducting magnet and supplementary solenoids) as well as for the overall mechanical design and fabrication of the prospective gyrotron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. [1] Macomber R.S. A Complete Introduction to Modern NMR Spectroscopy, John Willey and Sons, (1998).

    Google Scholar 

  2. [2] Abragam A. The principles of Nuclear Magnetism, Clarendon Press, Oxford, UK (1961).

    Google Scholar 

  3. [3] Abragam A., Goldman M. Nuclear Magnetism: Order and Disorder, Clarendon Press, Oxford, UK (1982).

    Google Scholar 

  4. [4] “High field NMR: A Baseline Study” prepared by the committee for “High Field NMR: A New Millennium Resource (More information on this study can be found at http://nmr.magnet.fsu.edu/resources/archive/nmrstudy/

  5. [5] Wuthrich K. NMR of Proteins and Nuclear Acids, Willey (1994).

    Google Scholar 

  6. [6] Cavanagh J. et al. Protein NMR Spectroscopy — Principles and Practice, Academic Press (1996).

    Google Scholar 

  7. [7] Becerra L.R., Gerfen G.J., Temkin R.J., Singel D.J. and Grifin R.G. Dynamic Nuclear Polarization with a Cyclotron Resonance Maser at 5 T. Phys. Rev. Lett., 71 (1993) 3561–3564.

    Article  PubMed  Google Scholar 

  8. [8] Weis V., Benati M., Rosay M., Bryant J.A. and Griffin R.G. High-Field DNP and ENDOR with a Novel Multiple-Frequency Resonance Structure. J. of Magnetic Resonance, 140 (1999) 293–299.

    Article  Google Scholar 

  9. [9] Bajaj V.S., Farrar C.T., Hornstein M.K., Mastovski I., Vieregg J., Bryant J., Elena B., Kreischer K.E., Temkin R.J. and Griffin R.G. Dynamic Nuclear Polarization at 9 T using a novel 250 GHz gyrotron microwave source. J. of Magnetic Resonance, 160 (2003) 85–90.

    Article  Google Scholar 

  10. [10] Hornstein M.K., Bajaj V.S., Griffin R.G., Kreischer K.E., Mastovsky I., Shapiro M.A., Sirigiri J.R., and Temkin R.J. Second Harmonic Operation at 460 GHz and Broadband Continuous Frequency Tuning of a Gyrotron Oscillator. IEEE Trans. Electr. Devices, 52 (2005) 798–807.

    Article  Google Scholar 

  11. [11] Woskov P.P., Bajaj V.S., Hornstein M.K., Temkin R.J. and Griffin R.J. Corrugated Waveguide and Directional Coupler for CW 250 GHz DNP Experiments. IEEE Trans. MTT, 53, (2005) 2363–2369.

    Article  Google Scholar 

  12. [12] Sabchevski S., Mladenov G., Idehara T. Modeling and Simulation of Magnetron Injection Guns for Submillimeter Wave Gyrotrons. Int. Journal of Infrared and Millimeter Waves, 20 (1999) 1019–1035.

    Article  Google Scholar 

  13. [13] Sabchevski S., Idehara T., Glyavin M., Ogawa I., Mitsudo S. Modelling and simulation of gyrotrons. Vacuum, 77 (2005) 519–525.

    Article  Google Scholar 

  14. [14] Nusinovich G.S. Introduction to the physics of gyrotrons, John Hopkins University Press, Baltimore and London (2004).

    Google Scholar 

  15. [15] Bratman V.L., Fedotov A.E. and Idehara T. Temporal dynamics of mode interaction in submillimeter wave second-harmonic gyrotron. Int. Journal of Infrared and Millimeter Waves, 22 (2001) 1409–1420.

    Article  Google Scholar 

  16. [16] Nusinovich G.S., Sinitsin O.V., Velikovich L., Yeddulla M., Antonsen T.M., Vlasov A.N., Cauffman S.R. and Felch K. Startup Scenarious in High-Power Gyrotrons. IEEE Trans. Plasma Sci., 32 (2004) 841–852.

    Article  Google Scholar 

  17. [17] Idehara T., Tatsukawa T., Ogawa I., Mori T, Tanabe H. and Wada S. Competition between fundamental and second-harmonic operations in a submillimeter wave gyrotron. Appl. Phys. Lett. 58 (1991) 1594–1596.

    Article  Google Scholar 

  18. [18] Brand G.F., Idehara T., Tatsukawa T., Ogawa I. Mode competition in a high harmonic gyrotron. Int. J. Electronics, 72 (1992) 745–758.

    Google Scholar 

  19. [19] Idehara T., Shimizu Y. Mode cooperation in a submillimeter wave gyrotron. Phys. Plasmas, 1 (1994) 3145–3147.

    Article  Google Scholar 

  20. [20] Idehara T., Mitsudo S., Pereyaslavets M., Shimizu Y. and Ogawa I. Mode cooperation in a submillimeter wave FU Series gyrotron. Int. Journal of Infrared and Millimeter Waves, 20 (1999) 1249–1270.

    Article  Google Scholar 

  21. [21] Idehara t., Shimizu Y., Makino S., Ichikawa K., Tatsukawa, Ogawa I., Brand G.F. Rapid frequency step-switching of a submillimeter wave gyrotron by modulation. Phys. Plasmas, 1 (1994) 1774–1776.

    Article  Google Scholar 

  22. [22] Idehara T., Shimizu Y., Ogawa I., Tatsukawa T. and Brand G.F. Rapid frequency step-switching in submillimeter wave gyrotrons (Gyrotrons FU III and FU IV). Phys. Plasmas, 6 (1999) 2613–2617.

    Article  Google Scholar 

  23. [23] G.F. Brand, Tunable Gyrotrons. Chapter in Infrared and Millimeter Waves vol. 14 (ed. K.J. Button, Academic Press, New York, 1985) 371–408.

    Google Scholar 

  24. [24] Brand G.F., Chen Z., Douglas N.G., Gross M., Ma J.Y.L. and L.C. Robinson, A tunable millimeter-submillimeter gyrotron. Int. J. Electronics, 57 (1984) 863–870.

    Google Scholar 

  25. [25] Kreischer K.E., Danly B.G., Woskoboinikow P., Mulligan W.J. and Temkin R.J. Frequency pulling and bandwidth measurements of a 140 GHz pulsed gyrotron. Int. J. Electronics, 57 (1984) 851–862.

    Google Scholar 

  26. [26] Kariya T., Saito T., Kiwamoto Y., Gotoh H. and Miyoshi S. Observation of Frequency Pulling Effect in Gyrotron. Jpn. J. Appl. Phys., 25 (1986) 654–655.

    Google Scholar 

  27. [27] Jones R.M. and Alcock M.W. The power transfer and frequency detuning in a gyrotron. Int. J. Electronics, 57 (1984) 901–914.

    Google Scholar 

  28. [28] Jones R.M. and Linsay P.A. Measurement of frequency shift in a gyrotron oscillator. Int. J. Electronics, 61 (1986) 937–951.

    Google Scholar 

  29. [29] Zasypkin E.V. Electron frequency detuning in gyrotrons. Radiotekhnika I Elektronika (in Russian, translation: Soviet J. Commun. Technol., Electron), 32 (1987) 2599–2605.

    Google Scholar 

  30. [30] Antakov I.I., Zasypkin E.V., and Sokolov E.V. Electron tuning of frequency in gyrotrons. Int. Journal of Infrared and Millimeter Waves, 14 (1993) 1001–1015.

    Article  Google Scholar 

  31. [31] Dumbrajs O., Nusinovich G. Theory of a frequency-step-tunable gyrotron for optimum plasma ECRH.- IEEE Trans. Plasma Sci., 20 (1992) 452–457.

    Article  Google Scholar 

  32. [32] Idehara T., Pereyaslavets M., Nishida, and Yoshida K. Frequency Modulation in a Submillimeter-Wave Gyrotron.- Phys. Rev. Lett. 81 (1998) 1973–1976.

    Article  Google Scholar 

  33. [33] Pereyaslavets M., Idehara T., Nishida N., Yoshida K., Yoshida K., and Ogawa I. Simulation and Measurement of Frequency Modulation in Submillimeter-Wave Gyrotron. IEEE Trans. Plasma Sci., 27 (1999) 363–366.

    Article  Google Scholar 

  34. [34] Dumbrajs O., Piosczyk B. Resonator for frequency step tunable gyrotron. Int. J. Electronics, 68 (199) 885–890.

    Google Scholar 

  35. [35] Zasypkin E.V., Moiseev M.A., and Nemirovskaya L.L. Expansion of a frequency tuning band ina gyrotron with coupled cavities. Int. J. Electronics, 85 (1998) 207–216.

    Article  Google Scholar 

  36. [36] Brand G.F., Chen Z., Douglas N.G., Gross M., Ma J.Y.L., and Robinson L.C. A tunable millimeter-submillimetre gyrotron. Int. J. Electronics, 57 (1984) 863–870.

    Google Scholar 

  37. [37] Ching E.S.C., Leung P.T., A. Maassen van den Brink, Suen W.M., Tong S.S., and Young K. Quasinormal-mode expansion for waves in open systems. Rev. Modern Phys., 70 (1998) 1545–1554.

    Article  Google Scholar 

  38. [38] Vlasov S.N., Zhislin G.M., Orlova I.M., Petelin M.I., Rogacheva G.G. Open resonators in the form of waveguides of changeable cross-section. Izv. Vishih Uchebn. Zaved.— Radiofizika, 12 (1969) 1236–1244 (in Russian).

    Google Scholar 

  39. [39] Fliflet A.W., Read M.E. Use of weakly irregular waveguide theory to calculate eigenfrequences, Q values, and RF field functions for gyrotron oscillators. Int. J. Electronics, 51 (1981) 475–484.

    Google Scholar 

  40. [40] Chu K.R., Kou C.S., Chen J.M., Tsai Y.C., Cheng C, Bor S.S., and Chang L.H. Spectral domain analysis of open cavities. Int. Journal of Infrared and Millimeter Waves, 13 (1992) 1571–1598.

    Article  Google Scholar 

  41. [41] Hung C.L., Tsai Y.C., and Chu K.R. A Study of Open-End Cavities by the Field-Energy Method. IEEE Trans. Plasma Sci., 26 (1998) 931–939.

    Article  Google Scholar 

  42. [42] Jansen E., Schunemann K. Network-theoretical model of the gyrotron oscillator. Part I: Empty cavity oscillation modes. Int. Journal of Infrared and Millimeter Waves, 12 (1991) 1271–1308.

    Google Scholar 

  43. [43] Xu A.-H., Zhou L.-Z. and Xu Ch.-H. A method for the synthesis of microwave open resonators. Int. J. Electronics, 57 (1984) 887–899.

    Google Scholar 

  44. [44] Bratman V.L., Moiseev M.A., Petelin M.I., and Erm R.R. Theory of gyrotron with a non-fixed structure of the high-frequency field. Radiophys. Quant. Electron., 16 (1973) 474–480.

    Article  Google Scholar 

  45. [45] Fliflet A.W., Read M.E., Chu K.R, and Seeley R. A self-consistent field theory for gyrotron oscillators: application to a low Q gyromonotron. Int. J. Electronics, 53 (1982) 505–521.

    Google Scholar 

  46. [46] Botton M., Antonsen T., Levush B., Nguyen K., and Vlasov A. MAGY: A time-dependent code for simulation of slow and fast microwave sources. IEEE Trans. Plasma Sci., 26 (1998) 882–892.

    Article  Google Scholar 

  47. [47] Chang T.H., Pao K.F/, Chen S.H., and Chu K.R. Self-consistent effects on the starting current of gyrotron oscillators. Int. Journal of Infrared and Millimeter Waves, 24 (2003) 1415–1420.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabchevski, S., Idehara, T., Mitsudo, S. et al. Conceptual Design Study of a Novel Gyrotron for NMR/DNP Spectroscopy. Int J Infrared Milli Waves 26, 1241–1264 (2005). https://doi.org/10.1007/s10762-005-7601-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-005-7601-x

Key words:

Navigation