Skip to main content
Log in

Effect of Eccentricity on Transmission in a Coaxial Bragg Structure

  • Published:
International Journal of Infrared and Millimeter Waves Aims and scope Submit manuscript

Abstract

In practice a coaxial Bragg structure always has an eccentricity between the outer-wall and inner-rod axes. Numerical simulations are carried out to analyze the effect of the eccentricity on the transmission in a coaxial Bragg structure. Results demonstrate that the effect of the eccentricity is minimized and becomes negligible when the phase difference between the outer and inner corrugations is π, no matter if the eccentricity is parallel or oblique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Yariv, and M. Nakamura, “Periodic Structures for Integrated Optics”, IEEE J. Quantum Electron. QE-13, 233–253, Apr. (1977).

    Google Scholar 

  2. H. Kogelnik, and C. V. Shank, “Coupled-Wave Theory of Distributed Feedback Laser,” J. Appl. Phys. 43, 2327–2335, May (1972).

    Article  ADS  Google Scholar 

  3. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals Modeling the Flow of Light, New Jersey: Princeton University Press, 1995.

  4. V. L. Bratman, G. G. Denisov, N. S. Ginzburg, and M. I. Petelin, “FEL’s with Bragg reflection resonators: Cyclotron Autoresonance Masers vesus Ubitrons,” IEEE J. Quantum Electronics, QE-19, 282–293, Mar. (1983).

    Google Scholar 

  5. A. J. Palmer, “Coupled-mode theory of overmoded cylindrical metal Bragg-reflectors,” IEEE J. Quantum Electron. QE-23, 65–70, Jan. (1987).

    Google Scholar 

  6. R. B. McCowan, A. W. Fliflet, S. H. Gold, V. L. Granatstein, and M. C. Wang, “Design of a waveguide resonator with rippled wall reflectors for a 100 GHz CARM oscillator experiment,” Int. J. Electron. 65, 463–475, (1988).

    Article  Google Scholar 

  7. R. B. McCowan et al., “The Design of a 100-GHz CARM oscillator experiment,” IEEE Trans. Electron Devices. 36, 1968–1975, Sept. (1989).

    Article  Google Scholar 

  8. C. K. Chong et al., “Bragg reflecors,” IEEE Trans. Plasma Sci. 20, 393–402, Jun. (1992).

    Article  ADS  Google Scholar 

  9. S. Alberti et al., “Experimental Study of a 28 GHz High-Power Long-Pulse Cyclotron Autoresonance Maser Oscillator,” Phys. Rev. Lett. 71, 2018–2021, Sept. (1993).

    Article  ADS  Google Scholar 

  10. N. S. Ginzburg et al., “The use of a hybrid resonator consisting of one-dimensional and two-dimensional Bragg reflectors for generation of spatially coherent radiation in a coaxial free-electron laser,” Phys. Plasmas. 9, 2798–2802, Jun. (2002).

    Article  ADS  Google Scholar 

  11. P. McGrane, I. V. Konoplev, K. Ronald, A. W. Cross and A. D. R. Phelps, “Experimental and theoretical study of constructive and destructive wave interference in a coaxial 1D Bragg structure,” in Joint 29th Int. Conf. Infrared Millimeter Waves and 12th Int. Conf. on Terahertz Electronics Dig., Karlsruhe, pp. 177–178, (2004).

  12. I. V. Konoplev et al., “Progress of the Strathclyde Free Electron Maser experiment using 2D Bragg structure,” Nucl. Instr. and Meth. A. 445, 236–240, (2000).

    Article  ADS  Google Scholar 

  13. I. V. Konoplev, P. McGrane, A. W. Cross, K. Ronald, and A. D. R. Phelps, “wave interference and band control in multiconductor one-dimensional Bragg structures,” J. Appl. Phys. 97, 073101-1–073101-7, Mar. (2005).

  14. I. V. Konoplev, P. McGrane, A. D. R. Phelps, A. W. Cross, and K. Ronald, “Observation of photonic band-gap control in one-dimensional Bragg structures”, Appl. Phys. Lett. 87, 121104, (2005).

    Article  ADS  Google Scholar 

  15. J. J. Barroso, and J. P. Leite Neto, “Design of coaxial Bragg reflectors,” IEEE Trans. Plasma Sci. 34, 666–672, Jun. (2006).

    Article  Google Scholar 

  16. Y. X. Lai, and S. C. Zhang, “Coaxial Bragg reflector with a corrugated inner rod”, IEEE Microw. Wirel. Compon. Lett.. 17, 328–331, May (2007).

    Article  Google Scholar 

  17. S.-C. Zhang, and M. Thumm, “Gyrokinetic description of the structural eccentricity on the strating current of a coaxial-cavity gyrotron,” Phys. Plasmas. 20, 157–170, (1999).

    Google Scholar 

  18. S.-C. Zhang, and M. Thumm, “Eigenvalue equations and numerical analysis of a coaxial cavity with misaligned inner rod,” IEEE Trans. Microwave Theor. Tech. 48, 8–14, Jan. (2000).

    Article  Google Scholar 

  19. Computer Simulation Technology (CST), User’s Manual 5, in CST-Microwave Studio, (2003).

Download references

Acknowledgements

This work was supported mainly by the National Natural Science Foundation of China (No.60471038). The authors would like to express their thanks to Dr. X.-D. Cui for useful discussion on the numerical simulations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Chang Zhang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhang, SC., Chen, XH. & Lai, YX. Effect of Eccentricity on Transmission in a Coaxial Bragg Structure. Int J Infrared Milli Waves 28, 1043–1050 (2007). https://doi.org/10.1007/s10762-007-9287-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-007-9287-8

Keywords

Navigation