Skip to main content
Log in

Kilowatt-peak Terahertz-wave Generation and Sub-femtojoule Terahertz-wave Pulse Detection Based on Nonlinear Optical Wavelength-conversion at Room Temperature

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

Intense Terahertz (THz)-wave generation and highly sensitive THz-wave detection were obtained by wavelength conversion with nonlinear optical susceptibility χ(2) of LiNbO3 crystals. Maximum peak output of about 50 kW (5 μJ/pulse) was demonstrated in an injection-seeded THz-wave parametric generator pumped by post-amplified emission from a microchip Nd:YAG laser. Using the sub-nanosecond pulse duration of the laser proposed herein provides effective mitigation of stimulated Brillouin scattering in LiNbO3, producing higher gain for wavelength conversion between near-infrared (near-IR) pump light and THz waves. Monochromatic THz radiation was obtained in the continuous tuning range of 0.7–2.9 THz. Additionally, highly sensitive THz-wave detection was demonstrated based on up-conversion from THz waves to near-IR light as well as efficient THz-wave generation. The signal generated with non-collinear phase-matching condition showed spectroscopic detection on the screen apart from the LiNbO3 crystal. Highly sensitive detection with minimum energy of about 80 aJ/pulse (0.8 μW at peak) and a large dynamic range of more than 100 dB were achieved in this experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. H. Hirori and K. Tanaka, "Nonlinear Optical Phenomena Induced by Intense Single-Cycle Terahertz Pulses," IEEE Journal of Selected Topics in Quantum Electronics, vol. 19, p. 8401110, 2013.

    Article  Google Scholar 

  2. J. Hebling, K. L. Yeh, M. C. Hoffmann, and K. A. Nelson, "High-power THz generation, THz nonlinear optics, and THz nonlinear spectroscopy," Ieee Journal of Selected Topics in Quantum Electronics, vol. 14, pp. 345-353, 2008.

    Article  Google Scholar 

  3. G. Ramian, "The New Ucsb Free-Electron Lasers," Nuclear Instruments & Methods in Physics Research Section a-Accelerators Spectrometers Detectors and Associated Equipment, vol. 318, pp. 225-229, 1992.

    Article  Google Scholar 

  4. J. Hebling, K. L. Yeh, M. C. Hoffmann, B. Bartal, and K. A. Nelson, "Generation of high-power terahertz pulses by tilted-pulse-front excitation and their application possibilities," Journal of the Optical Society of America B-Optical Physics, vol. 25, pp. B6-B19, 2008.

    Article  Google Scholar 

  5. J. Shikata, K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Characteristics of coherent terahertz wave generation from LiNbO3 optical parametric oscillator," Electronics and Communications in Japan Part II-Electronics, vol. 82, pp. 46-53, 1999.

    Article  Google Scholar 

  6. K. Kawase, J. Shikata, K. Imai, and H. Ito, "Transform-limited, narrow-linewidth, terahertz-wave parametric generator," Applied Physics Letters, vol. 78, pp. 2819-2821, 2001.

    Article  Google Scholar 

  7. H. Ito, K. Suizu, T. Yamashita, A. Nawahara, and T. Sato, "Random frequency accessible broad tunable terahertz-wave source using phase-matched 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal," Japanese Journal of Applied Physics Part 1-Regular Papers Brief Communications & Review Papers, vol. 46, pp. 7321-7324, 2007.

    Article  Google Scholar 

  8. G. K. Kitaeva, "Terahertz generation by means of optiacal lasers," Laser Physics Letters, vol. 5, pp. 559-576, 2008.

    Article  Google Scholar 

  9. A. A. Babin, V. N. Petryakov, and G. I. Freidman, Use of stimulated scattering by polaritons in detection of submillimeter radiation, Soviet Journal of Quantum Electronics, vol. 13, pp. 958-960, 1983.

    Article  Google Scholar 

  10. R. Guo, S. Ohno, H. Minamide, T. Ikari, and H. Ito, Highly sensitive coherent detection of terahertz waves at room temperature using a parametric process, Applied Physics Letters, vol. 93, p. 021106, 2008.

    Article  Google Scholar 

  11. H. Minamide, J. Zhang, R. X. Guo, K. Miyamoto, S. Ohno, and H. Ito, "High-sensitivity detection of terahertz waves using nonlinear up-conversion in an organic 4-dimethylamino-N-methyl-4-stilbazolium tosylate crystal," Applied Physics Letters, vol. 97, p. 121106, 2010.

    Article  Google Scholar 

  12. U. Meier, M. Bosch, C. Bosshard, and P. Gunter, "DAST a high optical nonlinearity organic crystal," Synthetic Metals, vol. 109, pp. 19-22, 2000.

    Article  Google Scholar 

  13. R. W. Boyd, Nonlinear Optics, Second ed.: Academic Press, 2003.

  14. D. R. Bosomworth, "Far Infrared Optical Properties of LiNbO3," Applied Physics Letters, vol. 9, pp. 330-331, 1966.

    Article  Google Scholar 

  15. G. W. Faris, L. E. Jusinski, and A. P. Hickman, "High-Resolution Stimulated Brillouin Gain Spectroscopy in Glasses and Crystals," Journal of the Optical Society of America B-Optical Physics, vol. 10, pp. 587-599, 1993.

    Article  Google Scholar 

  16. A. de Bernabe, C. Prieto, and A. de Andres, "Effect of stoichiometry on the dynamic mechanical properties of LiNbO3," Journal of Applied Physics, vol. 79, pp. 143-148, 1996.

    Article  Google Scholar 

  17. J. Shikata, K. Kawase, T. Taniuchi, and H. Ito, "Fourier-transform spectrometer with a terahertz-wave parametric generator," Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, vol. 41, pp. 134-138, 2002.

    Article  Google Scholar 

  18. K. Kawase, M. Sato, T. Taniuchi, and H. Ito, "Coherent tunable THz-wave generation from LiNbO3 with monolithic grating coupler," Applied Physics Letters, vol. 68, pp. 2483-2485, 1996.

    Article  Google Scholar 

  19. C. H. Henry and C. G. B. Garrett, Theory of Parametric Gain near a Lattice Resonance, Physical Review, vol. 171, pp. 1058, 1968.

    Article  Google Scholar 

  20. M. A. Piestrup, R. N. Fleming, and R. H. Pantell, "Continuously Tunable Submillimeter Wave Source," Applied Physics Letters, vol. 26, pp. 418-421, 1975.

    Article  Google Scholar 

  21. M. Tonouchi, "Cutting-edge terahertz technology," Nature Photonics, vol. 1, pp. 97-105, 2007.

    Article  Google Scholar 

  22. C. M. Armstrong, "The Truth About Terahertz," IEEE Spectrum, vol. 49, pp. 36-41, 2012.

    Article  Google Scholar 

  23. S. Hayashi, K. Nawata, H. Sakai, T. Taira, H. Minamide, and K. Kawase, "High-power, single-longitudinal-mode terahertz-wave generation pumped by a microchip Nd:YAG laser [Invited]," Optics Express, vol. 20, pp. 2881-6, 2012.

    Article  Google Scholar 

  24. H. Sakai, H. Kan, and T. Taira, "> 1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser," Optics Express, vol. 16, pp. 19891-19899, 2008.

    Article  Google Scholar 

  25. K. Imai, K. Kawase, H. Minamide, and H. Ito, "Achromatically injection-seeded terahertz-wave parametric generator," Optics Letters, vol. 27, pp. 2173-5, 2002.

    Article  Google Scholar 

  26. S. Hayashi, T. Shibuya, H. Sakai, T. Taira, C. Otani, Y. Ogawa, et al., "Tunability enhancement of a terahertz-wave parametric generator pumped by a microchip Nd:YAG laser," Applied Optics, vol. 48, pp. 2899-2902, 2009.

    Article  Google Scholar 

  27. M. J. Khan, J. C. Chen, and S. Kaushik, "Optical detection of terahertz radiation by using nonlinear parametric upconversion," Optics Letters, vol. 32, pp. 3248-3250, 2007.

    Article  Google Scholar 

  28. Y. J. Ding and W. Shi, "Efficient THz generation and frequency upconversion in GaP crystals," Solid-State Electronics, vol. 50, pp. 1128-1136, 2006.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Prof. H. Ito and Prof. M. Kumano of Tohoku University for extremely helpful discussions and advice. This work was partially supported by the Strategic International Cooperative Program (Japan–Singapore and Japan–France), and Collaborative Research Based on Industrial Demand of the Japan Science and Technology Agency (JST), and as a JSPS Sakura-project (I2012651), KAKENHI (23360045), (23560053), (24560535), (25286075), (25400436), and (25220606).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroaki Minamide.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Minamide, H., Hayashi, S., Nawata, K. et al. Kilowatt-peak Terahertz-wave Generation and Sub-femtojoule Terahertz-wave Pulse Detection Based on Nonlinear Optical Wavelength-conversion at Room Temperature. J Infrared Milli Terahz Waves 35, 25–37 (2014). https://doi.org/10.1007/s10762-013-0041-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-013-0041-0

Keywords

Navigation