Skip to main content
Log in

Experimental Comparison of Terahertz and Infrared Signaling in Laboratory-Controlled Rain

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

In order to analyze the impairments of terahertz (THz) and infrared (IR) links caused by attenuation through rain, THz and IR free-space communication channels at 625 GHz and 1550 nm, respectively, with a maximum data rate of 2.5 Gb/s have been developed in our lab. These two links are spatially superimposed and propagate through the same weather conditions. The performance of both channels is analyzed by measuring the power and bit error rates (BERs) in each link. A weather emulating chamber is designed that can generate controllable rain. Under the same conditions, attenuation by rain exhibits higher but comparable performance degradation in the THz channel. Analysis of power attenuation and BERs performance for both links is presented. Numerical simulations of THz and IR attenuation under different rain conditions are conducted and compared with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Cherry, S. “Edholm’s law of bandwidth,” IEEE Spectr. 41, 19-50 (2004).

    Google Scholar 

  2. I. Akyildiz, J. Jornet and C. Han. “Terahertz band: Next frontier for wireless communications,” Physical Commun. J. 12, 16-32 (2014).

    Article  Google Scholar 

  3. J. Federici and L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107, 111101 (2010).

    Article  Google Scholar 

  4. J. F. Federici, L. Moeller, and K. Su, “Terahertz Wireless Communications” in Handbook of Terahertz Technology for Imaging, Sensing, and Communications, Woodhead Publishers, (2013).

  5. T. Nagatsuma, S. Horiguchi, Y. Minamikata, Y. Yoshimizu, S. Hisatake, S. Kuwano, N. Yoshimoto, J. Terada, and H.i Takahashi. “Terahertz wireless communications based on photonics technologies,” Opt. Exp. 21, 23736-23747 (2013).

  6. T. Kürner and S. Priebe. “Towards THz communications-status in research, standardization and regulation,” J. Infrared Millim. Terahertz Waves, 35, 53-62 (2014).

    Article  Google Scholar 

  7. T. Kleine-Ostmann and T. Nagatsuma, “A review on terahertz communications research,” J. Infrared Millim. Terahertz Waves, 32, 143-171 (2011).

    Article  Google Scholar 

  8. K. Su, L. Moeller, R. Barat, Robert, J. Federici, “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Am. A, 29, 2360-2366 (2012).

    Article  Google Scholar 

  9. J. Ma, L. Moeller, and J. Federici. “Experimental Comparison of Terahertz and Infrared Signaling in Controlled Atmospheric Turbulence,” J. Infrared Millim. Terahertz Waves, 1-14 (2014).

  10. K. Su, L. Moeller, R. Barat, Robert, J. Federici, “Experimental comparison of performance degradation from terahertz and infrared wireless links in fog,” J. Opt. Soc. Am. A, 29, 179-1844 (2012).

    Article  Google Scholar 

  11. R. L. Freeman, Radio System Design for Telecommunications, Third Edition, New York (2007).

  12. S. Ishii, S. Sayama, and T. Kamei, “Measurement of rain attenuation in terahertz wave range,” Wireless Eng. Technol. 2, 119-124 (2011).

    Article  Google Scholar 

  13. C. C. Chen, “A correction for middleton’s visible and infrared radiation extinction coefficients due to rain,” Interim Report RAND Corp., Santa Monica, CA. 1 (1974).

  14. T. Mizuochi, “Recent progress in forward error correction and its interplay with transmission impairments,” IEEE J. Sel. Top. Quantum Electron. 12, 544-554 (2006)

    Article  Google Scholar 

  15. F. Vorrius, L. Lamb, J. Ma, L. Moeller, J. Federici. “Experimental and Theoretical Comparison of Terahertz Attenuation in Controlled Rain,” submitted for publication.

  16. A. Z. Suriza, M. R. Islam, A. K. Wajdi, and A. W. Naji, “Analysis of rain effects on terrestrial free space optics based on data measured in tropical climate,” IIUM Engineering Journal: Special Issue -1 on Science and Ethics in Engineering, 12, 45-51 (2011).

    Google Scholar 

  17. D. Deirmendjian, “Far-infrared and submillimeter wave attenuation by clouds and rain,” J. Appl. Meteorol. 14, 1584-1593 (1975).

    Article  Google Scholar 

  18. R. Olsen, D. V. Rogers, and D. B. Hodge. “The aRb relation in the calculation of rain attenuation,” IEEE Trans. Antennas Propagat. 26, 318-329 (1978).

    Article  Google Scholar 

  19. F. T. Ulaby and D. G. Long. Microwave Radar and Radiometric Remote Sensing. University of Michigan Press (2014).

  20. Y. Yang, M. Mandehgar, and D. Grischkowsky. “Time domain measurement of the THz refractivity of water vapor,” Opt. Exp. 20, 26208-26218 (2012).

    Article  Google Scholar 

  21. Y. Yang, M. Mandehgar, and D. Grischkowsky. “Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory,” Opt. Exp. 22, 4388-4403 (2014).

    Article  Google Scholar 

  22. ITU-R: Specific attenuation model for rain for use in prediction methods. Rec. P.838, ITU-R, (1999).

  23. L. C. Andrews and R. L. Phillips. Laser beam propagation through random media. Bellingham: SPIE press (2005).

    Book  Google Scholar 

  24. I. I. Kim, M. Mitchell, and E. J. Korevaar. “Measurement of scintillation for free-space laser communication at 785 nm and 1550 nm,” Proceedings of the SPIE, vol. 3850, 49-62 (1999).

    Article  Google Scholar 

  25. M. Sekine and G. Lind, “Rain Attenuation of Centimeter, Millimeter and Submillimeter Radio Waves,” Proceedings of the 12th European Microwave Conference, Helsinki, 584-589 (1982).

  26. R. W. Rice, P. A. Peebles. Investigation of Radar Rain Clutter Cancellation Using a Polarization Method. Tennessee Univ., Knoxville, 1975.

    Google Scholar 

  27. J. S. Marshall and W. M. K. Palmer, “The Distribution of Raindrops with Size,” J. Meteorol. 5, 165-166 (1948).

    Article  Google Scholar 

  28. I. V. Litovinov, “Size Distribution of Raindrops from Melting Hail,” Izvestia, Geophysical Series, 6, 903-912 (1958).

    Google Scholar 

  29. C. W. Ulbrich and D. Atlas, “Assessment of the Contribution of Differential Polarization to Improve Rainfall Measurements,” Radio Science, 19, 49-57 (1984).

    Article  Google Scholar 

  30. I. V. Litovinov, “On the Distribution Function of Particles of Rainfall,” Izvestia AN SSSR, Geophysical Series, 6, 838-839 (1957).

    Google Scholar 

  31. A. C. Best, “The Size Distribution of Raindrops,” Quarterly Journal of the Royal Meteorological Society, 76, 16-36 (1950).

    Article  Google Scholar 

  32. N. P. Krasyuk, V. I. Rozenberg and D. A. Chistyakov, “Attenuation and Scattering of Radar Signals by Radio with Shifrin and Marshall-Palmer Drop Size Distributions,” Radio Engineering and Electronic Physics, 13, 1638-1640 (1968).

    Google Scholar 

  33. T. Utsunomiya and M. Sekine, “Rain Attenuation at Millimeter and Submillimeter Wavelength,” J. Infrared Millim. Terahertz Waves, 26, 905-920 (2005).

    Article  Google Scholar 

  34. T. Utsunomiya and M. Sekine, “Rain Attenuation at 103 GHz in Millimeter Wave Ranges,” J. Infrared Millim. Terahertz Waves, 26, 1651-1660 (2005).

    Article  Google Scholar 

  35. M. Sekine, S. Ishii, S. Hwang and S. Sayama, “Weibull Raindrops-Size Distribution and Its Application to Rain Attenuation from 30 GHz To 1000 GHz,” J. Infrared Millim. Terahertz Waves, 28, 383-392 (2007).

    Article  Google Scholar 

  36. S. Ishii, S. Sayama and K. Mizutani, “Rain Attenuation at Terahertz,” Wireless Eng. Technol. 1, 92-95 (2010).

    Article  Google Scholar 

  37. M. Khatib, Contemporary Issues in Wireless Communications, InTech, (2014).

  38. G. Ivanovs and D. Serdega, “Rain intensity influence on to microwave line payback terms,” Electronics and Electrical Engineering, 70, 60-64 (2006).

    Google Scholar 

  39. A. Hirata, R. Yamaguchi, H. Takahashi, T. Kosugi, K. Murata, N. Kukutsu, and Y. Kado. “Effect of rain attenuation for a 10-Gb/s 120-GHz-band millimeter-wave wireless link,” IEEE Trans. Microw. Theory Tech. 57, 3099-3105 (2009).

    Article  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. ECCS-1102222.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Vorrius, F., Lamb, L. et al. Experimental Comparison of Terahertz and Infrared Signaling in Laboratory-Controlled Rain. J Infrared Milli Terahz Waves 36, 856–865 (2015). https://doi.org/10.1007/s10762-015-0183-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0183-3

Keywords

Navigation