Skip to main content
Log in

Comparison of Experimental and Theoretical Determined Terahertz Attenuation in Controlled Rain

  • Published:
Journal of Infrared, Millimeter, and Terahertz Waves Aims and scope Submit manuscript

Abstract

The effects of rain attenuation on 0.1- to 1-THz frequencies are reported in this paper. The THz pulses propagate through a rain chamber over a 4-m distance and are measured by THz time-domain spectroscopy (THz-TDS). A rain chamber is designed to generate controllable and reproducible rain conditions with different intensities. Image analysis software is employed to characterize the distribution of generated raindrop sizes. Theoretical THz power attenuations due to rain are calculated using Mie scattering theory and are compared with our measurements. Results show that both experimental and theoretical results are in very good agreement with each other.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Reference

  1. I. F.Akyildiz, J. M. Josep and C. Han. “Terahertz band: Next frontier for wireless communications,” Physical Communication, 12, 16-32 (2014).

  2. K. Su, Z. Liu, R. B. Barat, D. E. Gary, Z. H. Michalopoulou, and J. F. Federici. “Two-dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system,” Applied Optics, 49, E13-E19 (2010).

    Article  Google Scholar 

  3. Z. H. Michalopoulou, S. Mukherjee, Y. L. Hor, K. Su, Z.Liu, R. B. Barat, D. E. Gary, and J. F. Federici. “RDX detection with THz spectroscopy,” J. Infrared Millim. Terahertz Waves, 31, 1171-1181 (2010).

  4. Z. Liu, K. Su, D. E. Gary, J. F. Federici, R. B. Barat, and Z. H. Michalopoulou. “Video-rate terahertz interferometric and synthetic aperture imaging,” Applied Optics, 48, 3788-3795 (2009).

    Article  Google Scholar 

  5. J. F. Federici, B. Schulkin, F. Huang, D. Gary, R. Barat, F. Oliveira, D. Zimdars. “THz imaging and sensing for security applications - Explosives, weapons and drugs,” Semiconductor Science and Technology, 20, S266-S280 (2005).

    Article  Google Scholar 

  6. T. Kürner. “Towards future THz communications systems,” Terahertz Science and Technology, 5, 11-17 (2012).

    Google Scholar 

  7. T. Kürner, S. Priebe. “Towards THz communications-status in research, standardization and regulation,” J. Infrared Millim. Terahertz Waves, 35, 53-62 (2014).

    Article  Google Scholar 

  8. T. Kleine-Ostmann, T. Nagatsuma. “A Review on Terahertz Communications Research,” J. Infrared Millim. Terahertz Waves, 32, 143-171 (2011).

    Article  Google Scholar 

  9. K. R. Jha, G. Singh. “Terahertz planar antennas for future wireless communication: A technical review,” Infrared Physics and Technology, 60, 71-80 (2013).

    Article  Google Scholar 

  10. J. F. Federici, L. Moeller, K. Su. Terahertz Communication, in Handbook of terahertz technology for imaging and sensing. Woodhead Publishing, Cambridge, 2013.

    Google Scholar 

  11. J. F. Federici, L. Moeller. “Review of terahertz and subterahertz wireless communications,” Journal of Applied Physics, 107, 111101 (2010) .

    Article  Google Scholar 

  12. J. Ma, F. Vorrius, L. Lamb, L. Moeller, J. F. Federici. “Experimental Comparison of Terahertz and Infrared Signaling in Laboratory-Controlled Rain,” J. Infrared Millim. Terahertz Waves, 1-10 (2015).

  13. S. Cherry. “Edholm’s law of bandwidth,” IEEE Spectrum, 41, 58-60 (2004).

    Article  Google Scholar 

  14. Y. Yang, M. Mandehgar, D. Grischkowsky. “THz-TDS Characterization of the Digital Communication Channels of the Atmosphere and the Enabled Applications,” J. Infrared Millim. Terahertz Waves, 36, 97-129 (2015).

    Article  Google Scholar 

  15. K. Su, L. Moeller, R. B. Barat, J. F. Federici. “Experimental comparison of performance degradation from terahertz and infrared wireless links in fog,” J. Opt. Soc. Am. A, 29,179-184 (2012).

    Article  Google Scholar 

  16. Y. Yang, M. Mandehgar, D. R. Grischkowsky. “Broadband THz signals propagate through dense fog,” IEEE Photonics Technology Letters, 27, 383-386 (2015).

    Article  Google Scholar 

  17. K. Su, L. Moeller, R. B. Barat, J. F. Federici. “Experimental comparison of terahertz and infrared data signal attenuation in dust clouds,” J. Opt. Soc. Am. A, 29, 2360-2366 (2012) .

    Article  Google Scholar 

  18. J. Ma, L. Moeller, J. F. Federici. “Experimental comparison of Terahertz and Infrared Signaling in a Controlled Atmospheric Turbulence,” J. Infrared Millim. Terahertz Waves, 35, 1-14 (2014).

    Article  Google Scholar 

  19. R. L. Freeman. Radio System Design for Telecommunications. Wiley-IEEE Press, New York (2007) .

    Book  Google Scholar 

  20. T. Utsunomiya, M. Sekine. “Rain attenuation at 103 GHz in millimeter wave ranges,” J. Infrared Millim. Terahertz Waves, 26, 1651-1660 (2005).

    Article  Google Scholar 

  21. S. Ishii, S. Sayama, T. Kamei. “Measurement of Rain Attenuation in Terahertz Wave Range,” Wireless Engineering and Technology, 2, 119-124 (2011).

    Article  Google Scholar 

  22. M. Sekine, S. Ishii, S. I. Hwang, S. Sayama. “Weibull raindrop-size distribution and its application to rain attenuation from 30 GHz to 1000 GHz,” J. Infrared Millim. Terahertz Waves, 28, 383-392 (2007).

    Article  Google Scholar 

  23. T. Utsunomiya, M. Sekine. “Rain attenuation at millimeter and submillimeter wavelengths,” J. Infrared Millim. Terahertz Waves, 26, 905-920 (2005).

    Article  Google Scholar 

  24. A. Hirata, R. Yamaguchi, H.Takahashi, T. Kosugi, K. Murata, N. Kukutsu, Y. Kado. “Effect of rain attenuation for a 10-Gb/s 120-GHz-band millimeter-wave wireless link,” IEEE Transactions on Microwave Theory and Techniques, 57, 3099-3105 (2009).

  25. F. T. Ulaby, D. G. Long. Microwave Radar and Radiometric Remote Sensing. University of Michigan Press, Ann Arbor (2014).

    Book  Google Scholar 

  26. ITU-R: Specific attenuation model for rain for use in prediction methods. Rec. P.838, ITU-R, (1999).

  27. WMO: Guide to Meteorological Instruments and Methods of Observation. Geneva, Swizerland (2008).

  28. Y. Yang, M. Mandehgar, D. Grischkowsky. “Time domain measurement of the THz refractivity of water vapor,” Optics Express, 20, 26208-26218 (2012).

    Article  Google Scholar 

  29. Y. Yang, M. Mandehgar, D. Grischkowsky. “Determination of the water vapor continuum absorption by THz-TDS and Molecular Response Theory,” Optics Express, 22, 4388-4403 (2014).

    Article  Google Scholar 

  30. C. F. Bohren, D. R. Huffman. Absorption and Scattering of Light by Small Particles. Wiley, New York (1983).

    Google Scholar 

  31. G. Ivanovs, D. Serdega. “Rain intensity influence on to microwave line payback terms,” Electronics and Electrical Engineering, 70, 60-64 (2006).

    Google Scholar 

  32. M. Khatib. Contemporary Issues in Wireless Communications. InTech, Croatia (2014).

    Book  Google Scholar 

Download references

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grant No. ECCS-1102222. Technical assistance by C. Nicoletti with the THz-TDS instrument is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianjun Ma.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, J., Vorrius, F., Lamb, L. et al. Comparison of Experimental and Theoretical Determined Terahertz Attenuation in Controlled Rain. J Infrared Milli Terahz Waves 36, 1195–1202 (2015). https://doi.org/10.1007/s10762-015-0200-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10762-015-0200-6

Navigation